1,081 research outputs found
Spin Currents Induced by Nonuniform Rashba-Type Spin-Orbit Field
We study the spin relaxation torque in nonmagnetic or ferromagnetic metals
with nonuniform spin-orbit coupling within the Keldysh Green's function
formalism. In non-magnet, the relaxation torque is shown to arise when the
spin-orbit coupling is not uniform. In the absence of an external field, the
spin current induced by the relaxation torque is proportional to the vector
chirality of Rashba-type spin-orbit field (RSOF). In the presence of an
external field, on the other hand, spin relaxation torque arises from the
coupling of the external field and vector chirality of RSOF. Our result
indicates that spin-sink or source effects are controlled by designing RSOF in
junctions.Comment: 3 figure
Ferroelectric Nanotubes
We report the independent invention of ferroelectric nanotubes from groups in
several countries. Devices have been made with three different materials: lead
zirconate-titanate PbZr1-xTixO3 (PZT); barium titanate BaTiO3; and strontium
bismuth tantalate SrBi2Ta2O9 (SBT). Several different deposition techniques
have been used successfully, including misted CSD (chemical solution
deposition) and pore wetting. Ferroelectric hysteresis and high optical
nonlinearity have been demonstrated. The structures are analyzed via SEM, TEM,
XRD, AFM (piezo-mode), and SHG. Applications to trenching in Si dynamic random
access memories, ink-jet printers, and photonic devices are discussed.
Ferroelectric filled pores as small as 20 nm in diameter have been studied
Fluorescence kinetics of flavin adenine dinucleotide in different microenvironments
Fluorescence kinetics of flavin adenine dinucleotide was measured in a wide time and spectral range in different media, affecting its intra- end extramolecular interactions, and analyzed by a new method based on compressed sensing
Theoretical Study on Transport Properties of Normal Metal - Zigzag Graphene Nanoribbon - Normal Metal Junctions
We investigate transport properties of the junctions in which the graphene
nanoribbon with the zigzag shaped edges consisting of the legs is
sandwiched by the two normal metals by means of recursive Green's function
method. The conductance and the transmission probabilities are found to have
the remarkable properties depending on the parity of . The singular
behaviors close to E=0 with being the Fermi energy are demonstrated. The
channel filtering is shown to occur in the case with even.Comment: 4 pages, 5 figure
On the background in the reaction and mixed event simulation
In this paper we evaluate sources of background for the , with the detected through its decay channel, to
compare with the experiment carried out at ELSA. We find background from
followed by decay of a into two ,
recombining one and one , and from the reaction with subsequent decay of the into two photons. This
background accounts for the data at invariant masses beyond 700
MeV, but strength is missing at lower invariant masses which was attributed to
photon misidentification events, which we simulate to get a good reproduction
of the experimental background. Once this is done, we perform an event mixing
simulation to reproduce the calculated background and we find that the method
provides a good description of the background at low invariant
masses but fakes the background at high invariant masses, making background
events at low invariant masses, which are due to misidentification
events, responsible for the background at high invariant masses which is due to
the and reactions.Comment: 10 pages, 5 figure
X-ray Astronomy in the Laboratory with a Miniature Compact Object Produced by Laser-Driven Implosion
Laboratory spectroscopy of non-thermal equilibrium plasmas photoionized by
intense radiation is a key to understanding compact objects, such as black
holes, based on astronomical observations. This paper describes an experiment
to study photoionizing plasmas in laboratory under well-defined and genuine
conditions. Photoionized plasma is here generated using a 0.5-keV Planckian
x-ray source created by means of a laser-driven implosion. The measured x-ray
spectrum from the photoionized silicon plasma resembles those observed from the
binary stars Cygnus X-3 and Vela X-1 with the Chandra x-ray satellite. This
demonstrates that an extreme radiation field was produced in the laboratory,
however, the theoretical interpretation of the laboratory spectrum
significantly contradicts the generally accepted explanations in x-ray
astronomy. This model experiment offers a novel test bed for validation and
verification of computational codes used in x-ray astronomy.Comment: 5 pages, 4 figures are included. This is the original submitted
version of the manuscript to be published in Nature Physic
Molecular cloning and characterization of ABCG/PDR-type ABC transporter in grape berry skin
Grape (Vitis vinifera L.) skin contains the phenolic compound resveratrol which is important not only for resistance to biotic and abiotic stresses but also for human health. However, little is known about resveratrol transport in plant cells. ABC (ATP binding cassette) transporters are well-known transporters responsible for secondary metabolite accumulation in plants. Previous reports speculated that the full-size ABCG transporter pleiotropic drug-resistant (PDR) is involved in resveratrol transport in fungi and plants. In this paper, all full-size ABCG transporters found in the grape genome database are listed and focus is placed on VvABCG44/VvPDR14 as a candidate resveratrol transporter. The full-length cDNA of VvABCG44 was cloned by RT-PCR using mRNAs extracted from grape berry skin. VvABCG44 expression was induced by UV irradiation, and the expression pattern of VvABCG44 in various grape organs was similar to that of stilbene synthase (STS), a key enzyme in resveratrol synthesis. Resveratrol content in grape berry skin increased after UV irradiation. These results suggest that VvABCG44 functions as a resveratrol transporter in grape
Measurement of the cross-section and forward-backward charge asymmetry for the b and c-quark in e+e- annihilation with inclusive muons at sqrt(s) = 58 GeV
We have studied inclusive muon events using all the data collected by the
TOPAZ detector at sqrt(s)=58 GeV with an integrated luminosity of 273pb-1. From
1328 inclusive muon events, we measured the ratio R_qq of the cross section for
qq-bar production to the total hadronic cross section and forward-backward
asymmetry A^q_FB for b and c quarks. The obtained results are R_bb =
0.13+-0.02(stat)+-0.01(syst), R_cc = 0.36+-0.05(stat)+-0.05(syst), A^b_FB =
-0.20+-0.16(stat)+-0.01(syst) and A^c_FB = -0.17+-0.14(stat)+-0.02(syst), in
fair agreement with a prediction of the standard model.Comment: To be published in EPJ C. 24 pages, 12 figure
- …