111 research outputs found

    Molecular genetics of idiopathic pulmonary fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a severe progressive interstitial lung disease with a prevalence of 2 to 29 per 100,000 of the world’s population. Aging is a significant risk factor for IPF, and the mechanisms of aging (telomere depletion, genomic instability, mitochondrial dysfunction, loss of proteostasis) are involved in the pathogenesis of IPF. The pathogenesis of IPF consists of TGF-Ξ² activation, epithelial-mesenchymal transition, and SIRT7 expression decrease. Genetic studies have shown a role of mutations and polymorphisms in mucin genes (MUC5B), in the genes responsible for the integrity of telomeres (TERC, TERC, TINF2, DKC1, RTEL1, PARN), in surfactant-related genes (SFTPC, SFTPCA, SFTPA2, ABCA3, SP-A2), immune system genes (IL1RN, TOLLIP), and haplotypes of HLA genes (DRB1*15:01, DQB1*06:02) in IPF pathogenesis. The investigation of the influence of reversible epigenetic factors on the development of the disease, which can be corrected by targeted therapy, shows promise. Among them, an association of a number of specific microRNAs and long noncoding RNAs was revealed with IPF. Therefore, dysregulation of transposons, which serve as key sources of noncoding RNA and affect mechanisms of aging, may serve as a driver for IPF development. This is due to the fact that pathological activation of transposons leads to violation of the regulation of genes, in the epigenetic control of which microRNA originating from these transposons are involved (due to the complementarity of nucleotide sequences). Analysis of the MDTE database (miRNAs derived from Transposable Elements) allowed the detection of 12 different miRNAs derived in evolution from transposons and associated with IPF (miR-31, miR-302, miR-326, miR-335, miR-340, miR-374, miR-487, miR-493, miR-495, miR-630, miR-708, miR-1343). We described the relationship of transposons with TGF-Ξ², sirtuins and telomeres, dysfunction of which is involved in the pathogenesis of IPF. New data on IPF epigenetic mechanisms can become the basis for improving results of targeted therapy of the disease using noncoding RNAs

    Probable Mechanisms of COVID-19 Pathogenesis

    Get PDF
    This review paper focuses on the search for innovative directions in the study of COVIDΒ­19 viral infection with theΒ purpose of improving the methods of its treatment and vaccination. Thus far, comprehensive data have been obtained onΒ the ability of nonretroviral RNA viruses, including those replicated in the cytoplasm, to integrate fragments of their genomes into the host DNA. This mechanism provided by the reverseΒ  transcriptase and integrase of endogenous retroelements leads to the persistence of nonretroviral RNA virusesΒ  through the expression of viral proteins by the host genome,Β which may serve as a prerequisite for the survival of such viruses. DNA integration events play a role in the developmentΒ of both the immunological response and protective antiviral responses through the RNA interference system. TheseΒ mechanisms may depend on the phylogenetically ancient fossils of nonretroviral RNA sequences in animal genomes.Β The discovery of SARS-CoV-2 fragments in COVIDΒ­19 recovered patients suggests that the pathogenesis of this diseaseΒ may be associated with the integration of SARS-CoV-2 genome fragments in the human genome by means of proteins ofΒ endogenous retroviral elements. This assumption can be confirmed by the data about the development in older patientsΒ of predominantly severe forms of COVIDΒ­19 with β€œhyperactive” immune reactions, which normally weaken with ageing. This may be attributed to ageΒ­related abnormal activation ofΒ  retrocells, which contribute to reverse transcriptionΒ and integration of exogenous viruses. This assumption is supported by the presence of coronavirus components in theΒ nuclei of infected cells and the change in the expression of LINEΒ­1 in the lung tissue cells of SARS patients. Due to theΒ probable role of retrocells in the COVIDΒ­19 pathogenesis, LINEΒ­1 reverse transcriptase inhibitors and targeted therapyΒ using microRNAs may be offered as promising treatments for COVIDΒ­19

    ВСроятная Ρ€ΠΎΠ»ΡŒ рСтроэлСмСнтов Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π’ΠΈΠ»ΡŒΠΌΡΠ° ΠΏΡ€ΠΈ хромосомных синдромах

    Get PDF
    The review article analyzes the data accumulated in the literature on the association of Wilms’ tumor with chromosomal syndromes and searches for possible causes of this phenomenon. In 10 % of all cases, nephroblastoma is represented by a hereditary tumor syndrome due to germline mutations in suppressor genes, mainly in the WT1 gene, less often in WT2, WTX, CTNNB1, TP53. These genes are associated with retroelements that play a role in the development of Wilms’ tumor, promoting carcinogenesis, causing genome instability. LINE-1 retroelement is a negative regulator of WT1 expression, while suppressor genes are characterized by suppression of retroelement activity. Part of the pathogenesis of Perlman, Beckwith-Wiedemann, WAGR, and trisomy 18 syndromes caused by germline microdeletions is the activation of retroelements that promote somatic chromosomal rearrangements, including deletions, insertions, and translocations, which are characteristic of sporadic Wilms’ tumor. Long noncoding RNAs and microRNAs are formed from retroelements during evolution or directly during the processing of their transcripts. At the same time, long noncodingΒ RNAs affect the development of Wilms’ tumor by various mechanisms: due to the effect on ferroptosis (lncRNA AC007406.1, AC005208.1, LINC01770, DLGAP1-AS2, AP002761.4, STPG3-AS1, AC129507.1, AC234772.2, LINC02447, AC009570.1, ZBTB20-AS1 and LINC01179), Wnt/Ξ²-catenin signaling pathways (HOTAIR, MEG3), apoptosis (HAGLROS), regulation of expression of specific miRNAs (SNHG6, MEG8, XIST, SNHG16, DLEU1, CRNDE, SNHG6, DLGAP1, OSTM1-AS1, EMX2OS, H19). Analysis of the MDTE DB database revealed nephroblastoma-associated miRNAs that originate from retrotransposons. These include miR-192, -335, -378c, -562, -630, -1248. These molecules are promising for possible use in the pathogenetic treatment of Wilms’ tumor due to their effect on pathologically activated retrotransposons.Π’ ΠΎΠ±Π·ΠΎΡ€Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½Ρ‹Ρ… Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± ассоциации ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π’ΠΈΠ»ΡŒΠΌΡΠ° с хромосомными синдромами ΠΈ поиск Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΡ‡ΠΈΠ½ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ„Π΅Π½ΠΎΠΌΠ΅Π½Π°. Π’ 10 % всСх случаСв нСфробластома прСдставлСна наслСдствСнным ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΌ синдромом вслСдствиС Π³Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² Π³Π΅Π½Π°Ρ…-супрСссорах, Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π² Π³Π΅Π½Π΅ WT1, Ρ€Π΅ΠΆΠ΅ Π² WT2, WTX, CTNNB1, TP53. Π”Π°Π½Π½Ρ‹Π΅ Π³Π΅Π½Ρ‹ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ связью с рСтроэлСмСнтами, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π’ΠΈΠ»ΡŒΠΌΡΠ°, способствуя ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Ρƒ, вызывая Π³Π΅Π½ΠΎΠΌΠ½ΡƒΡŽ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ. РСтроэлСмСнт LINE-1 – Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ рСгулятор экспрСссии WT1, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π³Π΅Π½Ρ‹-супрСссоры ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ рСтроэлСмСнтов. Π§Π°ΡΡ‚ΡŒΡŽ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π° синдромов ΠŸΠ΅Ρ€Π»ΠΌΠ°Π½Π°, БСквита–ВидСмана, WAGR, трисомии 18, обусловлСнных Π³Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ микродСлСциями, являСтся активация рСтроэлСмСнтов, ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… соматичСским хромосомным пСрСстройкам, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ, инсСрции ΠΈ транслокации, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ для спорадичСской ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π’ΠΈΠ»ΡŒΠΌΡΠ°. ΠšΡ€ΠΎΠΌΠ΅ этого, рСтроэлСмСнты ΡΠ²Π»ΡΡŽΡ‚ΡΡ источниками Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… РНК ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΏΡ€ΠΈ процСссингС ΠΈΡ… транскриптов ΠΈΠ»ΠΈ Π² ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ Π³Π΅Π½ΠΎΠ². ΠŸΡ€ΠΈ этом Π΄Π»ΠΈΠ½Π½Ρ‹Π΅ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ РНК Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π’ΠΈΠ»ΡŒΠΌΡΠ° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ: Π·Π° счСт влияния Π½Π° Ρ„Π΅Ρ€Ρ€ΠΎΠΏΡ‚ΠΎΠ· (lncRNA AC007406.1, AC005208.1, LINC01770, DLGAP1-AS2, AP002761.4, STPG3-AS1, AC129507.1, AC234772.2, LINC02447, AC009570.1, ZBTB20-AS1 ΠΈ LINC01179), Π½Π° ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡƒΡ‚ΠΈ Wnt/Ξ²-ΠΊΠ°Ρ‚Π΅Π½ΠΈΠ½Π° (HOTAIR, MEG3), Π°ΠΏΠΎΠΏΡ‚ΠΎΠ· (HAGLROS), Π½Π° Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΡŽ экспрСссии спСцифичСских ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš (SNHG6, MEG8, XIST, SNHG16, DLEU1, CRNDE, SNHG6, DLGAP1, OSTM1-AS1, EMX2OS, H19).Анализ Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… MDTE DB ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ ассоциированныС с нСфробластомой ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ происходят ΠΎΡ‚ рСтротранспозонов. К Π½ΠΈΠΌ относятся miR-192, -335, -378c, -562, -630, -1248. Π­Ρ‚ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ пСрспСктивны Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ использования для патогСнСтичСского лСчСния ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π’ΠΈΠ»ΡŒΠΌΡΠ° вслСдствиС воздСйствия Π½Π° патологичСски Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ рСтротранспозоны.Β 

    INTERRELATION OF PRIONS WITH NON-CODING RNAS

    Get PDF
    Prions are alternative infectious conformations for some cellular proteins. For the protein PrPC (PrP – prion protein, Б – common), a prion conformation, called PrPSc (S – scrapie), is pathological. For example, in mammals the PrPSc prion causes transmissible spongiform encephalopathies accumulating in the brain tissues of PrPSc aggregates that have amyloid properties. MicroRNAs and long non-coding RNAs can be translated into functional peptides. These peptides can have a regulatory effect on genes from which their non-coding RNAs are transcribed. It has been assumed that prions, like peptides, due to the presence of specific domains, can also activate certain non-coding RNAs. Some of the activated non-coding RNAs can catalyze the formation of new prions from normal protein, playing their role in the pathogenesis of prion diseases. Confirmation of this assumption is the presence of the association of alleles of microRNA with the development of the disease, which indicates the role of the specific sequences of noncoding RNAs in the catalysis of prion formation. In the brain tissues of patients with prion diseases, as well as in exosomes containing an abnormal PrPSc isoform, changes in the levels of microRNA have been observed. A possible cause is the interaction of the spatial domains of PrPSc with the sequences of the non-coding RNA genes, which causes a change in their expression. MicroRNAs, in turn, affect the synthesis of long non-coding RNAs. We hypothesize that long noncoding RNAs and possibly microRNAs can interact with PrPC catalyzing its transformation into PrPSc. As a result, the number of PrPSc increases exponentially. In the brain of animals and humans, transposon activity has been observed, which has a regulatory effect on the differentiation of neuronal stem cells. Transposons form the basis of domain structures of long non-coding RNAs. In addition, they are important sources of microRNA. Since prion diseases can arise as sporadic and hereditary cases, and hereditary predisposition is important for the development of pathology, we hypothesize the role of individual features of activation of transposons in the pathogenesis of prion diseases. The activation of transposons in the brain at certain stages of development, as well as under the influence of stress, is reflected in the peculiarities of expression of specific non-coding RNAs that are capable of catalyzing the transition of the PrPC protein to PrPSc. Research in this direction can be the basis for targeted anti-microRNA therapy of prion diseases

    АтипичныС Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈ Π³Π΅Π½ΠΎ-фСнотипичСскиС коррСляции Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ·Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ°

    Get PDF
    Purpose of the study: Analysis of available data on geno-phenotypic correlations and atypical forms of neurofibromatosis type 1. Material and methods. We searched for relevant sources in the Scopus, Web of Science, PubMed systems, including publications from May 1993 to October 2021. Of the 318 studiesΒ  we identified, 59 were used to write a systematic review. Results. We found studies describing atypical forms of neurofibromatosis type 1 with an erased course without manifestation of a tumor syndrome, which are caused by specific mutations in the NF1 gene (causing substitutions of amino acids in neurofibromin: p.Arg1038, p.Met1149, p.Arg1809, or deletion of amino acids: p.Met990del, p.Met992del). NF1 patients with microdeletions are characterized by more severe disease symptoms (more often facial dysmorphism, skeletal and cardiovascular abnormalities, learning difficulties, and symptomatic spinal neurofibromas). mutations of splicing sites and extended deletions of the NF1 gene are associated with early manifestation of tumors, mutations at the 5’-end of the gene, causing a shortening of the protein product, are associated with optic nerve gliomas. the mutation c.3721C>T (p.R1241*) correlated with structural brain damage, and c.6855C>A (p.Y2285*)Β  withΒ  endocrineΒ  disorders. theΒ  manifestationsΒ  ofΒ  NF1,Β  similarΒ  toΒ  lipomatosisΒ  and Jaffe-Campanacci syndrome, not associated with a specific type of mutation are described. Conclusion.Β  In spite of pronounced clinical variability of the disease, even among members of the same family, several studies have described genotype-phenotype correlations. Therefore, the role of modifier genes and epigenetic factors in the pathogenesis of NF1 is assumed, since the neurofibromin protein has a complex structure with several functional domains. It has been shown that the severity of the tumor syndrome is influenced by the methylation characteristics of NF1 gene and adjacent areas. in addition, NF1 gene is associated with a variety of microRNAs. therefore, targeted therapy aimed at specific non-coding RNAs to restore normal expression of NF1 gene can become a promising treatment for NF1.ЦСль исслСдования – Π°Π½Π°Π»ΠΈΠ· Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± Π°Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΠ°Ρ… Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ·Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΈ гСнофСнотипичСских коррСляциях ΠΏΡ€ΠΈ этом Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΈ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Поиск ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… источников проводился Π² систСмах Scopus, Web of Science, PubMed с Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ с мая 1993 Π³. ΠΏΠΎ ΠΎΠΊΡ‚ΡΠ±Ρ€ΡŒ 2021 Π³. Из 318 Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Ρ… исслСдований 59 Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для написания систСматичСского ΠΎΠ±Π·ΠΎΡ€Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. НайдСны Ρ€Π°Π±ΠΎΡ‚Ρ‹ с описаниСм Π°Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ·Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° со стСртым Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π±Π΅Π· проявлСния ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ синдрома, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ обусловлСны спСцифичСскими мутациями Π² Π³Π΅Π½Π΅ NF1 (Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌΠΈ Π·Π°ΠΌΠ΅Π½Ρ‹ аминокислот Π² Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠΈΠ½Π΅: p.Arg1038, p.Met1149, p.Arg1809, ΠΈΠ»ΠΈ Π΄Π΅Π»Π΅Ρ†ΠΈΡŽ аминокислот: p.Met990del, p.Met992del). Для Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с микродСлСциями всСго Π³Π΅Π½Π° NF1 ΠΈ ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰ΠΈΡ… областСй Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ Π±ΠΎΠ»Π΅Π΅ тяТСлыС проявлСния Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ·Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° (Ρ‡Π°Ρ‰Π΅ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡΡ Π»ΠΈΡ†Π΅Π²ΠΎΠΉ Π΄ΠΈΠ·ΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌ, скСлСтныС ΠΈ сСрдСчно-сосудистыС Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ, трудности Π² ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΈ симптоматичСскиС ΡΠΏΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΡ‹). Π‘ Ρ€Π°Π½Π½Π΅ΠΉ манифСстациСй ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ассоциированы ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ сайтов сплайсинга ΠΈ протяТСнныС Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ Π³Π΅Π½Π° NF1, с Π³Π»ΠΈΠΎΠΌΠ°ΠΌΠΈ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π½Π΅Ρ€Π²ΠΎΠ² – ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π½Π° 5’-ΠΊΠΎΠ½Ρ†Π΅ Π³Π΅Π½Π°, Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ ΡƒΠΊΠΎΡ€ΠΎΡ‡Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°, со структурным ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° – мутация c.3721C>T (p.R1241*), с эндокринными расстройствами – мутация c.6855C>A (p.Y2285*). Описана клиничСская ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Π° Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ·Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ°, схоТая с Π»ΠΈΠΏΠΎΠΌΠ°Ρ‚ΠΎΠ·ΠΎΠΌ ΠΈ синдромом Π”ΠΆΠ°Ρ„Ρ„Π΅β€“ΠšΠ°ΠΌΠΏΠ°Π½Π°Ρ‡Ρ‡ΠΈ, Π½Π΅ связанная с ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΌ Ρ‚ΠΈΠΏΠΎΠΌ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. НСсмотря Π½Π° Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΡƒΡŽ ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π²Π°Ρ€ΠΈΠ°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ·Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° Π΄Π°ΠΆΠ΅ Ρƒ Ρ‡Π»Π΅Π½ΠΎΠ² ΠΎΠ΄Π½ΠΎΠΉ сСмьи, Π² рядС Ρ€Π°Π±ΠΎΡ‚ описаны Π³Π΅Π½ΠΎ-фСнотипичСскиС коррСляции. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π±Π΅Π»ΠΎΠΊ Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠΈΠ½ ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ структуру с нСсколькими Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄ΠΎΠΌΠ΅Π½Π°ΠΌΠΈ, прСдполагаСтся Ρ€ΠΎΠ»ΡŒ Π³Π΅Π½ΠΎΠ²-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ² ΠΈ эпигСнСтичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ·Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ°. Показано, Ρ‡Ρ‚ΠΎ Π½Π° Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ синдрома Π²Π»ΠΈΡΡŽΡ‚ особСнности мСтилирования Π³Π΅Π½Π° NF1 ΠΈ ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰ΠΈΡ… областСй, Π° сам Π³Π΅Π½ взаимосвязан с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ пСрспСктивным способом лСчСния Π½Π΅ΠΉΡ€ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ·Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ таргСтная тСрапия, нацСлСнная Π½Π° спСцифичСскиС Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ РНК для восстановлСния Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ экспрСссии Π³Π΅Π½Π° NF1

    The role of transposable elements in the ecological morphogenesis under the influence of stress

    Get PDF
    In natural selection, insertional mutagenesis is an important source of genome variability. Transposons are sensors of environmental stress effects, which contribute to adaptation and speciation. These effects are due to changes in the mechanisms of morphogenesis, since transposons contain regulatory sequences that haveΒ cisΒ andΒ transΒ effects on specific protein-coding genes. In variability of genomes, the horizontal transfer of transposons plays an important role, because it contributes to changing the composition of transposons and the acquisition of new properties. Transposons are capable of site-specific transpositions, which lead to the activation of stress response genes. Transposons are sources of non-coding RNA, transcription factors binding sites and protein-coding genes due to domestication, exonization, and duplication. These genes contain nucleotide sequences that interact with non-coding RNAs processed from transposons transcripts, and therefore they are under the control of epigenetic regulatory networks involving transposons. Therefore, inherited features of the location and composition of transposons, along with a change in the phenotype, play an important role in the characteristics of responding to a variety of environmental stressors. This is the basis for the selection and survival of organisms with a specific composition and arrangement of transposons that contribute to adaptation under certain environmental conditions. In evolution, the capability to transpose into specific genome sites, regulate gene expression, and interact with transcription factors, along with the ability to respond to stressors, is the basis for rapid variability and speciation by altering the regulation of ontogenesis. The review presents evidence of tissue-specific and stage-specific features of transposon activation and their role in the regulation of cell differentiation to confirm their role in ecological morphogenesis

    Involvement of transposable elements in neurogenesis

    Get PDF
    The article is about the role of transposons in the regulation of functioning of neuronal stem cells and mature neurons of the human brain. Starting from the first division of the zygote, embryonic development is governed by regular activations of transposable elements, which are necessary for the sequential regulation of the expression of genes specific for each cell type. These processes include differentiation of neuronal stem cells, which requires the finest tuning of expression of neuron genes in various regions of the brain. Therefore, in the hippocampus, the center of human neurogenesis, the highest transposon activity has been identified, which causes somatic mosai cism of cells during the formation of specific brain structures. Similar data were obtained in studies on experimental animals. Mobile genetic elements are the most important sources of long non-coding RNAs that are coexpressed with important brain protein-coding genes. Significant activity of long non-coding RNA was detected in the hippocampus, which confirms the role of transposons in the regulation of brain function. MicroRNAs, many of which arise from transposon transcripts, also play an important role in regulating the differentiation of neuronal stem cells. Therefore, transposons, through their own processed transcripts, take an active part in the epigenetic regulation of differentiation of neurons. The global regulatory role of transposons in the human brain is due to the emergence of protein-coding genes in evolution by their exonization, duplication and domestication. These genes are involved in an epigenetic regulatory network with the participation of transposons, since they contain nucleotide sequences complementary to miRNA and long non-coding RNA formed from transposons. In the memory formation, the role of the exchange of virus-like mRNA with the help of the Arc protein of endogenous retroviruses HERV between neurons has been revealed. A possible mechanism for the implementation of this mechanism may be reverse transcription of mRNA and site-specific insertion into the genome with a regulatory effect on the genes involved in the memory

    Аваскулярный Π½Π΅ΠΊΡ€ΠΎΠ· Π³ΠΎΠ»ΠΎΠ²ΠΊΠΈ Π±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ кости Π² РСспубликС Π‘Π°ΡˆΠΊΠΎΡ€Ρ‚ΠΎΡΡ‚Π°Π½ (ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-эпидСмиологичСскоС исслСдованиС)

    Get PDF
    Introduction. Avascular necrosis of the femoral head (AVNFH) is a relatively rare complex disease that occurs in people of working age and leads to disability due to irreversible changes in the aff ected hip joint. Aetiology of the disease has not been reliably established so far.Materials and methods. Among a total of 42,877 residents of Ufa surveyed, 71 were diagnosed with AVNFH. Patients granted an informed consent to conduct the survey, access the outpatient history of concomitant pathology, perform hip X-ray and laboratory blood tests.Results and discussion. Th e AVNFH incidence rate was 166 per 100,000 people, with the men to women ratio 1:1.5 and average age of manifestation 50 years. Secondary necrosis was established in 14, and bilateral lesion β€” in 42 % of cases. A family with hereditary AVNFH (mother, daughter and grandmother) was observed. A significantly higher incidence rate was observed with children in mononational families, which suggests a protective role of crossbreeding against this pathology. In 31 % of patients, the disease manifested atypically resembling lumbago with sciatica, which entailed a late AVNFH diagnosis. Smoking and long-term contact with chemicals were identified as the risk factors, and hypertension, chronic cerebral ischemia, anaemia, hypercholesterolemia and chronic inflammation β€” as associated disorders. A radiological profi le of the disease is described.Conclusion. Th e study allowed a precise estimation of the AVNFH incidence rate as 1 per 600 people. Idiopathic AVNFH occurred in 86 % of cases, with smoking and professional long-term contact with chemical agents as associated risk factors. Pedigree studies exposed a low incident rate in ethnically mixed families. AVNFH was shown comorbid with the hypertensive disease in 56 and chronic cerebral ischemia β€” in 42 % of patients. Atypical lumbago-sciatica-like symptoms in 1/3 of AVNFH cases warrant the need to conduct hip X-ray and MRI in this category of patients.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Аваскулярный Π½Π΅ΠΊΡ€ΠΎΠ· Π³ΠΎΠ»ΠΎΠ²ΠΊΠΈ Π±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ кости (ΠΠΠ“Π‘Πš) β€” ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π΅Π΄ΠΊΠΎΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ со слоТным ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·ΠΎΠΌ, ΠΏΠΎΡ€Π°ΠΆΠ°ΡŽΡ‰Π΅Π΅ людСй трудоспособного возраста ΠΈ приводящСС ΠΊ ΠΈΠ½Π²Π°Π»ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ вслСдствиС Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΡ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΠΏΠΎΡ€Π°ΠΆΠ΅Π½Π½ΠΎΠΌ Ρ‚Π°Π·ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΌ суставС. ДостовСрных Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± этиологии Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдовано 42 877 ΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ Π³ΠΎΡ€ΠΎΠ΄Π° Π£Ρ„Ρ‹, срСди ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… выявлСн 71 случай ΠΠΠ“Π‘Πš. Π‘ согласия Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΡ… Π°Π½ΠΊΠ΅Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π°ΠΌΠ±ΡƒΠ»Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΊΠ°Ρ€Ρ‚ с выявлСниСм ΡΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ, рСнтгСнография Ρ‚Π°Π·ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Ρ… суставов, Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Π΅ исслСдования ΠΊΡ€ΠΎΠ²ΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС. Π Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΠΠ“Π‘Πš составила 166 Π½Π° 100 000, ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΡƒΠΆΡ‡ΠΈΠ½ ΠΊ ΠΆΠ΅Π½Ρ‰ΠΈΠ½Π°ΠΌ β€” 1:1,5, срСдний возраст манифСстации β€” 50 Π»Π΅Ρ‚. Π’Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹ΠΉ Π½Π΅ΠΊΡ€ΠΎΠ· выявлСн Π² 14 %, двустороннС ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ β€” Π² 42 % случаСв. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° сСмья с наслСдствСнной Ρ„ΠΎΡ€ΠΌΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ (ΠΌΠ°ΠΌΠ°, Π΄ΠΎΡ‡ΡŒ ΠΈ Π±Π°Π±ΡƒΡˆΠΊΠ°). ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚ Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΎΠ΄Π½ΠΎΠΉ Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Ρ‡Ρ‚ΠΎ позволяСт ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ мСтисации Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ. Π£ 31 % ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² болСзнь Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π»Π°ΡΡŒ Π°Ρ‚ΠΈΠΏΠΈΡ‡Π½ΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎΠΉ, Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡŽΡ‰Π΅ΠΉ люмбаго с ишиасом, Π² связи с Ρ‡Π΅ΠΌ ΠΠΠ“Π‘Πš диагностировался Π½Π° ΠΏΠΎΠ·Π΄Π½Π΅ΠΉ стадии. Π€Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ риска Π±ΠΎΠ»Π΅Π·Π½ΠΈ оказались ΠΊΡƒΡ€Π΅Π½ΠΈΠ΅ ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ с химичСскими вСщСствами, выявлСна ассоциация с гипСртоничСской болСзнью, хроничСской ишСмиСй Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π°Π½Π΅ΠΌΠΈΠ΅ΠΉ, гипСрхолСстСринСмиСй ΠΈ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ процСссами. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ выявлСнных особСнностСй рСнтгСнологичСской ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρ‹ заболСвания.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ исслСдованиС ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΡƒΡŽ частоту встрСчаСмости ΠΠΠ“Π‘Πš β€” 1 случай Π½Π° 600 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ. Π˜Π΄ΠΈΠΎΠΏΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΠΠ“Π‘Πš составил 86 %, с влияниСм Π½Π° Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π±ΠΎΠ»Π΅Π·Π½ΠΈ Ρ‚Π°ΠΊΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² риска, ΠΊΠ°ΠΊ ΠΊΡƒΡ€Π΅Π½ΠΈΠ΅ ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ с химичСскими Π°Π³Π΅Π½Ρ‚Π°ΠΌΠΈ Π½Π° производствС. Анализ родословных Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π» Π½ΠΈΠ·ΠΊΠΈΠΉ ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… ΠΏΠΎ этничСской принадлСТности Π±Ρ€Π°ΠΊΠ°Ρ…. ВыявлСна ΠΊΠΎΠΌΠΎΡ€Π±ΠΈΠ΄Π½ΠΎΡΡ‚ΡŒ ΠΠΠ“Π‘Πš с гипСртоничСской болСзнью Ρƒ 56 % ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΈ с хроничСской ишСмиСй Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° (42 %). Атипичная ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ° Ρƒ 1/3 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΠΠ“Π‘Πš с Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡŽΡ‰ΠΈΠΌΠΈ люмбаго с ишиасом симптомами говорят ΠΎ нСобходимости провСдСния Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΈ МРВ Ρ‚Π°Π·ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Ρ… суставов Ρƒ Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²

    Π’Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΡŒ транспозонов с Π΄Π»ΠΈΠ½Π½Ρ‹ΠΌΠΈ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ РНК ΠΈ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°ΠΌΠΈ Π² ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Π΅

    Get PDF
    It has been proven that 98 % of the human genome is transcribed. The main part of resulting molecules after their processing function as various RNA molecules, among which the best known are long noncoding RNA (lncRNA)Β  and microRNA. There are 126,000 lncRNA genes in humans that regulate transcription, translation, histone modifications, heterochromatin formation, splicing, microRNA expression and formation, and matrix RNA (mRNA)Β  post-transcriptional modifications. An important property of lncRNAs is their mutual and self-regulation by peptides formed during their translation, which also affect the expression of protein-coding genes. This property may be due to origin of lncRNAs from transposable elements and is a conservative evolutionary characteristic of lncRNA, as one of properties in formation of new genes for variability and adaptation.Β  The role of lncRNAs originating from retroelements and microRNAs formed during their processing in the specific regulation of genes involved in carcinogenesis has been proven. The peptides formed during lncRNA translation can be used as universal tools for targeted therapy of malignant neoplasms. Analysis of the scientific literatureΒ  made it possible to describe 21 lncRNAs thatΒ  are translatedΒ  to form peptides involved in specific tumors pathogenesis. Since the ability of lncRNA to self-regulate by products of its own translation, which is characteristic of all lncRNAs, is also a property of transposable elements, it is promising to study transposons and their relationship with lncRNAs for designing new therapeutic models.Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ 98 % Π³Π΅Π½ΠΎΠΌΠ° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° транскрибируСтся. Основная Ρ‡Π°ΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΡ€ΠΈ этом ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» послС ΠΈΡ… процСссинга Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΠ΅Ρ‚ Π² качСствС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» РНК, срСди ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ извСстны Π΄Π»ΠΈΠ½Π½Ρ‹Π΅ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ РНК (днРНК) ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš. Π£ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° выявлСны 126 тыс. Π³Π΅Π½ΠΎΠ² днРНК, Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Ρ€Π°Π½ΡΠΊΡ€ΠΈΠΏΡ†ΠΈΡŽ, Ρ‚Ρ€Π°Π½ΡΠ»ΡΡ†ΠΈΡŽ, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ гистонов, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°, сплайсинг, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš, Π° Ρ‚Π°ΠΊΠΆΠ΅ посттранскрипционныС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ РНК (мРНК). Π’Π°ΠΆΠ½Ρ‹ΠΌ свойством днРНК являСтся Π²Π·Π°ΠΈΠΌΠΎ- ΠΈ саморСгуляция ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΌΠΈΡΡ ΠΏΡ€ΠΈ ΠΈΡ… трансляции ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Π»ΠΈΡΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Π±Π΅Π»ΠΎΠΊ-ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π³Π΅Π½ΠΎΠ². Π”Π°Π½Π½ΠΎΠ΅ свойство ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ обусловлСно происхоТдСниСм днРНК ΠΎΡ‚ транспозонов ΠΈ прСдставляСт собой ΠΊΠΎΠ½ΡΠ΅Ρ€Π²Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ характСристику днРНК ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎ ΠΈΠ· свойств ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π½ΠΎΠ²Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² для измСнчивости ΠΈ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ. Π”ΠΎΠΊΠ°Π·Π°Π½Π° Ρ€ΠΎΠ»ΡŒ Π²ΠΎΠ·Π½ΠΈΠΊΡˆΠΈΡ… ΠΎΡ‚ рСтроэлСмСнтов днРНК ΠΈ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΈ ΠΈΡ… процСссингС ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš Π² спСцифичСской рСгуляции Π³Π΅Π½ΠΎΠ², ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Π΅. ΠžΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΈ трансляции днРНК ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΊΠ°ΠΊ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹Π΅ инструмСнты для Ρ‚Π°Ρ€Π³Π΅Ρ‚Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. Анализ Π½Π°ΡƒΡ‡Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ 21 днРНК, которая транслируСтся с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ², Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Π½Ρ‹Ρ… Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π· спСцифичСских ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ. ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ днРНК ΠΊ саморСгуляции ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌΠΈ собствСнной трансляции, которая Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Π° для всСх днРНК, являСтся Ρ‚Π°ΠΊΠΆΠ΅ свойством транспозонов, пСрспСктивно исслСдованиС ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… гСнСтичСских элСмСнтов ΠΈ ΠΈΡ… взаимосвязи с днРНК для проСктирования Π½ΠΎΠ²Ρ‹Ρ… тСрапСвтичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ
    • …
    corecore