412 research outputs found
FUSE Measurements of Interstellar Fluorine
The source of fluorine is not well understood, although core-collapse
supernovae, Wolf-Rayet stars, and asymptotic giant branch stars have been
suggested. A search for evidence of the nu process during Type II supernovae is
presented. Absorption from interstellar F I is seen in spectra of HD 208440 and
HD 209339A acquired with the Far Ultraviolet Spectroscopic Explorer. In order
to extract the column density for F I from the line at 954 A, absorption from
H2 has to be modeled and then removed. Our analysis indicates that for H2
column densities less than about 3 x 10^20 cm^-2, the amount of F I can be
determined from lambda 954. For these two sight lines, there is no clear
indication for enhanced F abundances resulting from the nu process in a region
shaped by past supernovae.Comment: 17 pages, 4 figures, accepted for publication in Ap
CH in stellar atmospheres: an extensive linelist
The advent of high-resolution spectrographs and detailed stellar atmosphere
modelling has strengthened the need for accurate molecular data.
Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with
which to study transitions from the CH molecule. We combine programs for
spectral analysis of molecules and stellar-radiative transfer codes to build an
extensive CH linelist, including predissociation broadening as well as newly
identified levels. We show examples of strong predissociation CH lines in CEMP
stars, and we stress the important role played by the CH features in the
Bond-Neff feature depressing the spectra of barium stars by as much as 0.2
magnitudes in the 3000 -- 5500 \AA\ range. Because of the extreme
thermodynamic conditions prevailing in stellar atmospheres (compared to the
laboratory), molecular transitions with high energy levels can be observed.
Stellar spectra can thus be used to constrain and improve molecular data.Comment: 33pages, 15 figures, accepted in A&A external data available at
http://www.astro.ulb.ac.be/~spectrotools
The s-Process in Rotating Asymptotic Giant Branch Stars
(abridged) We model the nucleosynthesis during the thermal pulse phase of a
rotating, solar metallicity AGB star of 3M_sun. Rotationally induced mixing
during the thermal pulses produces a layer (~2E-5M_sun) on top of the CO-core
where large amounts of protons and C12 co-exist. We follow the abundance
evolution in this layer, in particular that of the neutron source C13 and of
the neutron poison N14. In our AGB model mixing persists during the entire
interpulse phase due to the steep angular velocity gradient at the
core-envelope interface. We follow the neutron production during the interpulse
phase, and find a resulting maximum neutron exposure of tau_max =0.04 mbarn^-1,
which is too small to produce any significant s-process. In parametric models,
we then investigate the combined effects of diffusive overshooting from the
convective envelope and rotationally induced mixing. Models with overshoot and
weaker interpulse mixing - as perhaps expected from more slowly rotating stars
- yield larger neutron exposures. We conclude that the incorporation of
rotationally induce mixing processes has important consequences for the
production of heavy elements in AGB stars. Through a distribution of initial
rotation rates it may lead to a natural spread in the neutron exposures
obtained in AGB stars of a given mass - as appears to be required by
observations. Our results suggest that both processes, diffusive overshoot and
rotational mixing, may be required to obtain a consistent description of the
s-process in AGB stars which fulfils all observational constraints. Finally, we
find that mixing due to rotation within our current framework does increase the
production of N15 in the partial mixing zone, however still falling short of
what seems required by observations.Comment: 50 pages, 13 figures, ApJ in press, tentatively scheduled for v593 n2
August 20, 200
The detection of extragalactic N: Consequences for nitrogen nucleosynthesis and chemical evolution
Detections of extragalactic N are reported from observations of the
rare hydrogen cyanide isotope HCN toward the Large Magellanic Cloud
(LMC) and the core of the (post-) starburst galaxy NGC 4945. Accounting for
optical depth effects, the LMC data from the massive star-forming region N113
infer a N ratio of 111 17, about twice the C
value. For the LMC star-forming region N159HW and for the central region of NGC
4945, N ratios are also 100. The N ratios
are smaller than all interstellar nitrogen isotope ratios measured in the disk
and center of the Milky Way, strongly supporting the idea that N is
predominantly of `primary' nature, with massive stars being its dominant
source. Although this appears to be in contradiction with standard stellar
evolution and nucleosynthesis calculations, it supports recent findings of
abundant N production due to rotationally induced mixing of protons into
the helium-burning shells of massive stars.Comment: 15 pages including one postscript figure, accepted for publication by
ApJ Letter, further comments: please contact Yi-nan Chi
The fluorine abundance in a Galactic Bulge AGB star measured from CRIRES spectra
We present measurements of the fluorine abundance in a Galactic Bulge
Asymptotic Giant Branch (AGB) star. The measurements were performed using high
resolution K-band spectra obtained with the CRIRES spectrograph, which has been
recently installed at ESO's VLT, together with state-of-the-art model
atmospheres and synthetic spectra. This represents the first fluorine abundance
measurement in a Galactic Bulge star, and one of few measurements of this kind
in a third dredge-up oxygen-rich AGB star. The F abundance is found to be close
to the solar value scaled down to the metallicity of the star, and in agreement
with Disk giants that are comparable to the Bulge giant studied here. The
measurement is of astrophysical interest also because the star's mass can be
estimated rather accurately (1.4 \lesssim M/\mathrm{M}_{\sun} \lesssim 2.0).
AGB nucleosynthesis models predict only a very mild enrichment of F in such low
mass AGB stars. Thus, we suggest that the fluorine abundance found in the
studied star is representative for the star's natal cloud, and that fluorine
must have been produced at a similar level in the Bulge and in the Disk.Comment: 11 pages, 1 figure, accepted for publication by Ap
Reaction Rates Uncertainties and the Production of F19 in AGB Stars
We present nucleosynthesis calculations and the resulting 19F stellar yields
for a large set of models with different masses and metallicity. We find that
the production of fluorine depends on the temperature of the convective pulses,
the amount of primary 12C mixed into the envelope by third dredge up and the
extent of the partial mixing zone. Then we perform a detailed analysis of the
reaction rates involved in the production of 19F and the effects of their
uncertainties. We find that the major uncertainties are associated with the
14C(alpha,gamma)18O and the 19F(alpha,p)22Ne reaction rates. For these two
reactions we present new estimates of the rates and their uncertainties. The
importance of the partial mixing zone is reduced when using our estimate for
the 14C(alpha,gamma)18O rate. Taking into account both the uncertainties
related to the partial mixing zone and those related to nuclear reactions, the
highest values of 19F enhancements observed in AGB stars are not matched by the
models. This is a problem that will have to be revised by providing a better
understanding of the formation and nucleosynthesis in the partial mixing zone,
also in relation to reducing the uncertainties of the 14C(alpha,gamma)18O
reaction rate. At the same time the possible effect of Cool Bottom Processing
at the base of the convective envelope should be included in the computation of
AGB nucleosynthesis. This process could in principle help matching the highest
19F abundances observed by decreasing the C/O ratio at the surface of the star,
while leaving the 19F abundance unchanged.Comment: 40 pages, 8 figures, accepted for publication on the Astrophysical
Journa
Large-scale environments of binary AGB stars probed by Herschel. II: Two companions interacting with the wind of pi1 Gruis
Context. The Mass loss of Evolved StarS (MESS) sample observed with PACS on
board the Herschel Space Observatory revealed that several asymptotic giant
branch (AGB) stars are surrounded by an asymmetric circumstellar envelope (CSE)
whose morphology is most likely caused by the interaction with a stellar
companion. The evolution of AGB stars in binary systems plays a crucial role in
understanding the formation of asymmetries in planetary nebul{\ae} (PNe), but
at present, only a handful of cases are known where the interaction of a
companion with the stellar AGB wind is observed.
Aims. We probe the environment of the very evolved AGB star Gruis on
large and small scales to identify the triggers of the observed asymmetries.
Methods. Observations made with Herschel/PACS at 70 m and 160 m
picture the large-scale environment of Gru. The close surroundings of
the star are probed by interferometric observations from the VLTI/AMBER
archive. An analysis of the proper motion data of Hipparcos and Tycho-2
together with the Hipparcos Intermediate Astrometric Data help identify the
possible cause for the observed asymmetry.
Results. The Herschel/PACS images of Gru show an elliptical CSE whose
properties agree with those derived from a CO map published in the literature.
In addition, an arc east of the star is visible at a distance of
from the primary. This arc is most likely part of an
Archimedean spiral caused by an already known G0V companion that is orbiting
the primary at a projected distance of 460 au with a period of more than 6200
yr. However, the presence of the elliptical CSE, proper motion variations, and
geometric modelling of the VLTI/AMBER observations point towards a third
component in the system, with an orbital period shorter than 10 yr, orbiting
much closer to the primary than the G0V star.Comment: 13 pages, 11 figures, accepted for publication in Astronomy &
Astrophysic
Aluminum-, Calcium- And Titanium-Rich Oxide Stardust In Ordinary Chondrite Meteorites
We report isotopic data for a total of 96 presolar oxide grains found in
residues of several unequilibrated ordinary chondrite meteorites. Identified
grain types include Al2O3, MgAl2O4, hibonite (CaAl12O19) and Ti oxide. This
work greatly increases the presolar hibonite database, and is the first report
of presolar Ti oxide. O-isotopic compositions of the grains span previously
observed ranges and indicate an origin in red giant and asymptotic giant branch
(AGB) stars of low mass (<2.5 MSun) for most grains. Cool bottom processing in
the parent AGB stars is required to explain isotopic compositions of many
grains. Potassium-41 enrichments in hibonite grains are attributable to in situ
decay of now-extinct 41Ca. Inferred initial 41Ca/40Ca ratios are in good
agreement with model predictions for low-mass AGB star envelopes, provided that
ionization suppresses 41Ca decay. Stable Mg and Ca isotopic ratios of most of
the hibonite grains reflect primarily the initial compositions of the parent
stars and are generally consistent with expectations for Galactic chemical
evolution, but require some local interstellar chemical inhomogeneity. Very
high 17O/16O or 25Mg/24Mg ratios suggest an origin for some grains in binary
star systems where mass transfer from an evolved companion has altered the
parent star compositions. A supernova origin for the hitherto enigmatic
18O-rich Group 4 grains is strongly supported by multi-element isotopic data
for two grains. The Group 4 data are consistent with an origin in a single
supernova in which variable amounts of material from the deep 16O-rich interior
mixed with a unique end-member mixture of the outer layers. The Ti oxide grains
primarily formed in low-mass AGB stars. They are smaller and rarer than
presolar Al2O3, reflecting the lower abundance of Ti than Al in AGB envelopes.Comment: Accepted for publication in ApJ; 47 pages, 13 figure
s-Process Nucleosynthesis in Carbon Stars
We present the first detailed and homogeneous analysis of the s-element
content in Galactic carbon stars of N-type. Abundances of Sr,Y, Zr (low-mass
s-elements, or ls) and of Ba, La, Nd, Sm and Ce (high-mass s-elements, hs) are
derived using the spectral synthesis technique from high-resolution spectra.
The N-stars analyzed are of nearly solar metallicity and show moderate
s-element enhancements, similar to those found in S stars, but smaller than
those found in the only previous similar study (Utsumi 1985), and also smaller
than those found in supergiant post-AGB stars. This is in agreement with the
present understanding of the envelope s-element enrichment in giant stars,
which is increasing along the spectral sequence M-->MS-->S-->SC-->C during the
AGB phase. We compare the observational data with recent -process
nucleosynthesis models for different metallicities and stellar masses. Good
agreement is obtained between low mass AGB star models (M < 3 M_o) and
s-elements observations. In low mass AGB stars, the 13C(alpha, n)16O reaction
is the main source of neutrons for the s-process; a moderate spread, however,
must exist in the abundance of 13C that is burnt in different stars. By
combining information deriving from the detection of Tc, the infrared colours
and the theoretical relations between stellar mass, metallicity and the final
C/O ratio, we conclude that most (or maybe all) of the N-stars studied in this
work are intrinsic, thermally-pulsing AGB stars; their abundances are the
consequence of the operation of third dredge-up and are not to be ascribed to
mass transfer in binary systems.Comment: 31 pages, 10 figures, 6 tables. Accepted in Ap
- …