58 research outputs found
Enhancement of the anomalous Hall effect and spin glass behavior in the bilayered manganite La(2-2x)Sr(1+2x)Mn2O7
The Hall resistivity and magnetization have been investigated in the
ferromagnetic state of the bilayered manganite La(2-2x)Sr(1+2x)Mn2O7 (x=0.36).
The Hall resistivity shows an increase in both the ordinary and anomalous Hall
coefficients at low temperatures below 50K, a region in which experimental
evidence for the spin glass state has been found in a low magnetic field of
1mT. The origin of the anomalous behavior of the Hall resistivity relevant to
magnetic states may lie in the intrinsic microscopic inhomogeneity in a
quasi-two-dimensional electron system.Comment: 7 pages, 4 figures, Solid State Communications (in press
Role of Orbital Degeneracy in Double Exchange Systems
We investigate the role of orbital degeneracy in the double exchange (DE)
model. In the limit, an effective generalized ``Hubbard''
model incorporating orbital pseudospin degrees of freedom is derived. The model
possesses an exact solution in one- and in infinite dimensions. In 1D, the
metallic phase off ``half-filling'' is a Luttinger liquid with
pseudospin-charge separation. Using the solution for our effective
model, we show how many experimental observations for the well-doped () three-dimensional manganites can be qualitatively
explained by invoking the role of orbital degeneracy in the DE model.Comment: 8 pages, 2 figures, submitted to Phys. Rev.
Quantum Spin Pump in S=1/2 antiferromagnetic chains -Holonomy of phase operators in sine-Gordon theory-
In this paper, we propose the quantum spin pumping in quantum spin systems
where an applied electric field () and magnetic field () cause a finite
spin gap to its critical ground state. When these systems are subject to
alternating electromangetic fields; and travel along the {\it{loop}} which encloses
their critical ground state in this - phase diagram, the locking
potential in the sine-Gordon model slides and changes its minimum. As a result,
the phase operator acquires holonomy during one cycle along
, which means that the quantized spin current has been
transported through the bulk systems during this adiabatic process. The
relevance to real systems such as Cu-benzoate and is
also discussed.Comment: 10 pages, 5 figures, to be published in J. Phys. Soc. Jpn. 74 (2005)
no. 4. Typos corrected in the revised versio
Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned
The complex resistivity of the vortex lattice in an
untwinned crystal of 93-K has been measured at frequencies
from 100 kHz to 20 MHz in a 2-Tesla field ,
using a 4-probe RF transmission technique that enables continuous measurements
versus and temperature . As is increased, the inductance increases steeply to a cusp
at the melting temperature , and then undergoes a steep collapse
consistent with vanishing of the shear modulus . We discuss in detail
the separation of the vortex-lattice inductance from the `volume' inductance,
and other skin-depth effects. To analyze the spectra, we consider a weakly
disordered lattice with a low pin density. Close fits are obtained to
over 2 decades in . Values of the pinning parameter
and shear modulus obtained show that collapses by
over 4 decades at , whereas remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres
Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on distorted fcc lattice
The Berry phase due to the spin wavefunction gives rise to the orbital
ferromagnetism and anomalous Hall effect in the non-coplanar antiferromagnetic
ordered state on face centered cubic (fcc) lattice once the crystal is
distorted perpendicular to (1,1,1) or (1,1,0)- plane. The relevance to the real
systems -FeMn and NiS is also discussed.Comment: 4 pages, 3 figure
Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction
High real-space-resolution atomic pair distribution functions of
La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using
high-energy x-ray powder diffraction to study the size and shape of the MnO_6
octahedron as a function of temperature and doping. In the paramagnetic
insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95
and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long
bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and
T=20K, we find a single Mn-O bond-length; however, as the metal-insulator
transition is approached either by increasing T or decreasing x, intensity
progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the
appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong
evidence that charge localized and delocalized phases coexist close to the
metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.
Topological Nature of Anomalous Hall Effect in Ferromagnet
The anomalous Hall effect in two-dimensional ferromagnets is discussed to be
the physical realization of the parity anomaly in (2+1)D, and the band crossing
points behave as the topological singularity in the Brillouin zone. This
appears as the sharp peaks and the sign changes of the transverse conductance
as a function of the Fermi energy and/or the magnetization. The
relevance to the experiments including the three dimensional systems is also
discussed.Comment: LaTeX 13 pages, 3 figure
Charge Transport in Manganites: Hopping Conduction, the Anomalous Hall Effect and Universal Scaling
The low-temperature Hall resistivity \rho_{xy} of La_{2/3}A_{1/3}MnO_3 single
crystals (where A stands for Ca, Pb and Ca, or Sr) can be separated into
Ordinary and Anomalous contributions, giving rise to Ordinary and Anomalous
Hall effects, respectively. However, no such decomposition is possible near the
Curie temperature which, in these systems, is close to metal-to-insulator
transition. Rather, for all of these compounds and to a good approximation, the
\rho_{xy} data at various temperatures and magnetic fields collapse (up to an
overall scale), on to a single function of the reduced magnetization
m=M/M_{sat}, the extremum of this function lying at m~0.4. A new mechanism for
the Anomalous Hall Effect in the inelastic hopping regime, which reproduces
these scaling curves, is identified. This mechanism, which is an extension of
Holstein's model for the Ordinary Hall effect in the hopping regime, arises
from the combined effects of the double-exchange-induced quantal phase in
triads of Mn ions and spin-orbit interactions. We identify processes that lead
to the Anomalous Hall Effect for localized carriers and, along the way, analyze
issues of quantum interference in the presence of phonon-assisted hopping. Our
results suggest that, near the ferromagnet-to-paramagnet transition, it is
appropriate to describe transport in manganites in terms of carrier hopping
between states that are localized due to combined effect of magnetic and
non-magnetic disorder. We attribute the qualitative variations in resistivity
characteristics across manganite compounds to the differing strengths of their
carrier self-trapping, and conclude that both disorder-induced localization and
self-trapping effects are important for transport.Comment: 29 pages, 20 figure
Large Anomalous Hall effect in a silicon-based magnetic semiconductor
Magnetic semiconductors are attracting high interest because of their
potential use for spintronics, a new technology which merges electronics and
manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently
emerged as the most popular materials for this new technology. While Curie
temperatures are rising towards room temperature, these materials can only be
fabricated in thin film form, are heavily defective, and are not obviously
compatible with Si. We show here that it is productive to consider transition
metal monosilicides as potential alternatives. In particular, we report the
discovery that the bulk metallic magnets derived from doping the narrow gap
insulator FeSi with Co share the very high anomalous Hall conductance of
(GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens
up a new arena for spintronics, involving a bulk material based only on
transition metals and Si, and which we have proven to display a variety of
large magnetic field effects on easily measured electrical properties.Comment: 19 pages with 5 figure
Anomalous Hall effect in paramagnetic two dimensional systems
We investigate the possibility of observing the anomalous Hall effect (AHE)
in two dimensional paramagnetic systems. We apply the semiclassical equations
of motion to carriers in the conduction and valence bands of wurtzite and
zincblende quantum wells in the exchange field generated by magnetic impurities
and we calculate the anomalous Hall conductivity based on the Berry phase
corrections to the carrier velocity. We show that under certain circumstances
this conductivity approaches one half of the conductance quantum. We consider
the effect of an external magnetic field and show that for a small enough field
the theory is unaltered.Comment: 9 pages, 10 figures, 2 table
- …
