2,016 research outputs found

    Eco-aesthetic dimensions: Herbert Marcuse, ecollogy and art

    Get PDF
    In his last book, The Aesthetic Dimension (1978), Marcuse argued that a concern for aesthetics is justified when political change is unlikely. But the relation between aesthetics and politics is oblique: “Art cannot change the world, but it can contribute to changing the consciousness … of the men and women who could change the world.” (p. 33). Marcuse also linked his critique of capitalism to environmentalism in the early 1970s: “the violation of the Earth is a vital aspect of the counterrevolution.” (Ecology and Revolution, in The New Left and the 1960s, Collected Papers 3, 2005, p. 173). This article revisits Marcuse’s ideas on aesthetics and ecology, and reviews two recent art projects which engage their audiences in ecological issues: The Jetty Project (2014) by Wolfgang Weileder—which used recycled material and community participation to construct a temporary monument within a wider conservation project on the Tyne, N-E England—and Fracking Futures by HeHe (Helen Evans and Heiko Hansen)—which turned the interior of the gallery at FACT, Liverpool, into what appeared to be a fracking site. The aim is not to evaluate the projects, nor to test the efficacy of Marcuse’s ideas, more to ask again whether art has a role in a shift of attitude which might contribute to dealing with the political and economic causes of climate change

    Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity

    Full text link
    We study the interaction of an atom with a quantum guided field in a weakly driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian and derive the density-matrix equations for the combined atom-cavity system. We calculate the mean photon number, the second-order photon correlation function, and the atomic excited-state population. We show that, due to the confinement of the guided cavity field in the fiber cross-section plane and in the space between the FBG mirrors, the presence of the atom in the FBG cavity can significantly affect the mean photon number and the photon statistics even though the cavity finesse is moderate, the cavity is long, and the probe field is weak.Comment: Accepted for Phys. Rev.

    Bound whispering gallery modes in circular arrays of dielectric spherical particles

    Full text link
    Low-dimensional ordered arrays of optical elements can possess bound modes having an extremely high quality factor. Typically, these arrays consist of metal elements which have significantly high light absorption thus restricting performance. In this paper we address the following question: can bound modes be formed in dielectric systems where the absorption of light is negligible? Our investigation of circular arrays of spherical particles shows that (1) high quality modes in an array of 10 or more particles can be attained at least for a refractive index nr>2n_{r}>2, so optical materials like TiO2_{2} or GaAs can be used; (2) the most bound modes have nearly transverse polarization perpendicular to the circular plane; (3) in a particularly interesting case of TiO2_{2} particles (rutile phase, nr=2.7n_{r}=2.7), the quality factor of the most bound mode increases almost by an order of magnitude with the addition of 10 extra particles, while for particles made of GaAs the quality factor increases by almost two orders of magnitude with the addition of ten extra particles. We hope that this preliminary study will stimulate experimental investigations of bound modes in low-dimensional arrays of dielectric particles.Comment: Submitted to Physical Review

    Resonant Bend Loss in Leakage Channel Fibers

    Full text link
    Leakage channel fibers, designed to suppress higher-order modes, demonstrate resonant power loss at certain critical radii of curvature. Outside the resonance, the power recovers to the levels offset by the usual mechanism of bend-induced loss. Using C2^2-imaging, we experimentally characterize this anomaly and identify the corresponding physical mechanism as the radiative decay of the fundamental mode mediated by the resonant coupling to a cladding mode.Comment: 3 pages, 4 figures, submitted to Optics Letter

    Propagation of surface plasmons on plasmonic Bragg gratings

    Get PDF
    We use coupled-mode theory to describe the scattering of a surface-plasmon polariton (SPP) from a square wave grating (Bragg grating) of finite extension written on the surface of either a metal-dielectric interface or a dielectric-dielectric interface covered with a patterned graphene sheet. We find analytical solutions for the reflectance and transmittance of SPP's when only two modes (forward- and back-scattered) are considered. We show that in both cases the reflectance spectrum presents stop-bands where the SPP is completely back-scattered, if the grating is not too shallow. In addition, the reflectance coefficient shows Fabry-P\'erot oscillations when the frequency of the SPP is out of the stop-band region. For a single dielectric well, we show that there are frequencies of transmission equal to 1. We also provide simple analytical expression for the different quantities in the electrostatic limit.N.M.R.P. acknowledges Bruno Amorim for discussions in the early stage of this work. Both authors thank D. T. Alves for corrections. N.M.R.P. acknowledges support from the European Commission through the Project "Graphene-Driven Revolutions in ICT and Beyond" (Ref. No. 785219); COMPETE2020, PORTUGAL2020, FEDER; and the Portuguese Foundation for Science and Technology (FCT) through Project POCI-01-0145-FEDER-028114 and in the framework of the Strategic Financing UID/FIS/04650/2013

    Comparison of Quantum and Classical Local-field Effects on Two-Level Atoms in a Dielectric

    Full text link
    The macroscopic quantum theory of the electromagnetic field in a dielectric medium interacting with a dense collection of embedded two-level atoms fails to reproduce a result that is obtained from an application of the classical Lorentz local-field condition. Specifically, macroscopic quantum electrodynamics predicts that the Lorentz redshift of the resonance frequency of the atoms will be enhanced by a factor of the refractive index n of the host medium. However, an enhancement factor of (n*n+2)/3 is derived using the Bloembergen procedure in which the classical Lorentz local-field condition is applied to the optical Bloch equations. Both derivations are short and uncomplicated and are based on well-established physical theories, yet lead to contradictory results. Microscopic quantum electrodynamics confirms the classical local-field-based results. Then the application of macroscopic quantum electrodynamic theory to embedded atoms is proved false by a specific example in which both the correspondence principle and microscopic theory of quantum electrodynamics are violated.Comment: Published version with rewritten abstract and introductio

    Unified theory for Goos-H\"{a}nchen and Imbert-Fedorov effects

    Full text link
    A unified theory is advanced to describe both the lateral Goos-H\"{a}nchen (GH) effect and the transverse Imbert-Fedorov (IF) effect, through representing the vector angular spectrum of a 3-dimensional light beam in terms of a 2-form angular spectrum consisting of its 2 orthogonal polarized components. From this theory, the quantization characteristics of the GH and IF displacements are obtained, and the Artmann formula for the GH displacement is derived. It is found that the eigenstates of the GH displacement are the 2 orthogonal linear polarizations in this 2-form representation, and the eigenstates of the IF displacement are the 2 orthogonal circular polarizations. The theoretical predictions are found to be in agreement with recent experimental results.Comment: 15 pages, 3 figure

    Quantum computation by quantum-like systems

    Get PDF
    Using a quantumlike description for light propagation in nonhomogeneous optical fibers, quantum information processing can be implemented by optical means. Quantum-like bits (qulbits) are associated to light modes in the optical fiber and quantum gates to segments of the fiber providing an unitary transformation of the mode structure along a space direction. Simulation of nonlinear quantum effects is also discussed.Comment: 12 pages, Late
    • …
    corecore