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We use coupled-mode theory to describe the scattering of a surface-plasmon polariton (SPP) from a square
wave grating (Bragg grating) of finite extension written on the surface of either a metal-dielectric interface or
a dielectric-dielectric interface covered with a patterned graphene sheet. We find analytical solutions for the
reflectance and transmittance of SPP’s when only two modes (forward- and back-scattered) are considered.
We show that in both cases the reflectance spectrum presents stop-bands where the SPP is completely
back-scattered, if the grating is not too shallow. In addition, the reflectance coefficient shows Fabry-Pérot
oscillations when the frequency of the SPP is out of the stop-band region. For a single dielectric well, we
show that there are frequencies of transmission equal to 1. We also provide simple analytical expression for
the different quantities in the electrostatic limit.

I. INTRODUCTION

The usage of plasmonic technology depends on the pos-
sibility of controlling the propagation of surface-plasmon
polaritons. Bragg grattings are a relatively simple way
to control the propagation of light in both optical fibers1
and metal-dielectric plasmonic interfaces2. When the
conditions for destructive interference are fulfilled, the
grating acts as a perfect mirror. In traditional Bragg
gratings, the stop-band frequency can be engineered
through the grating geometric parameters and a judi-
ciously choice of dielectrics. For plasmonic graphene
Bragg grattings, the stop-band depends on the car-
rier density (or the equivalently the Fermi energy of
graphene)3, thus giving a new tool for in-situ control
of the stop-band through a gate potential. We show in
this paper that coupled-mode theory can be used to ob-
tain analytic expressions describing the propagation of
graphene plasmons as they propagate along the Bragg
grating.

In a recent paper4 coupled-mode theory5 was used for
describing a set of experimental results showing unidirec-
tional reflectionless in parity-time metamaterial at opti-
cal frequencies (see also Ref.6). The metamaterial was
itself made of a periodic arrangement of metallic nanos-
tructures in an optical fiber. Coupled mode theory was
quite popular in the seventies and the eighties of the last
century and to our best knowledge it was first discussed
by Yariv in the context of coupled waveguides7. How-
ever, with the advent of powerful numerical methods its
use has declined. The paper of Feng et al.4 gives a nice
example where coupled-mode theory allows an analyti-
cal analysis of a scattering experiment with the obvious
insight that an analytical solution provides over a fully
numerical one.

a)Electronic mail: peres@fisica.uminho.pt

In the context of guided wave optics, Taylor and
Yariv provided8 a detailed analysis of co- and contra-
directional coupling, which corresponds to forward- and
back-scattering of a single propagating mode induced by
a periodic perturbation. Such perturbation can be in-
troduced as a change of the dielectric function along the
propagation direction or a Bragg grating imposed on the
surface of the waveguide. The theory of electromagnetic
propagation in periodic stratified media was first dis-
cussed by in great detail by Yeh, Yariv, and Hong9. In
the context of the theory of lasers, a comparison between
the transfer matrix method and coupled-mode theory was
given by Makino10. Recently, coupled-mode theory was
used for studying the scattering of electromagnetic modes
in a waveguide with corrugated boundaries11.

In this work, we discuss the application of coupled-
mode theory to the back-scattering of a surface-plasmon
polariton from a one-dimensional Bragg grating imposed
on the surface of a metal-dielectric interface. As a sec-
ond example, we consider a graphene sheet covering a fi-
nite Bragg grating and the back-scattering of a graphene
surface-plasmon polariton is discussed. To our best
knowledge, coupled-mode theory has not been applied
so far to discuss the scattering of SPP’s. However, a
recent work has used this approach to discuss the exci-
tation of SPP in gratings by far-field coupling12. The
coupling of a Gaussian laser beam to a SPP in a metallic
film using coupled-mode theory was discussed by Ruan et
al.13. In the context of graphene physics, coupled-mode
theory was recently used to discuss the excitation of lo-
calized plasmons of a graphene-based cavity with a Silver
waveguide14.

Also, problems in the context of nonlinear optics can
be treated using coupled-mode theory15. Integrating
numerically the coupled-mode equations, Petracek and
Kuzmiak have described Anderson localization of channel
SPP’s in a disordered square-wave grating16. In a differ-
ent context, Graczyk and Krawczyk have studied17 the
propagation of magnetoelastic waves using the methods
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described in this article. The nonlinear interaction, pro-
moted by a nonlinear second-order susceptibility tensor,
between SPP’s was considered first by Santamato and
Maddalena18. Interesting enough, coupled-mode the-
ory was adapted for describing coupling of Bose-Einstein
condensates19. The same type of approach has been
used for describing the field enhancement near plasmonic
nanostructure under the effect of an external field20. The
extension of the theory to chiral waveguides was achieved
by Pelet and Engheta21, and constitutes a nice applica-
tion of Lorentz’s reciprocity theorem.

Coupled-mode equations are able to give both numeric
and analytical results,that is, they can either be numeri-
cally integrated, thus giving exact results, or they can be
solved in an approximate manner, thus giving approx-
imate results. Both approaches have their own advan-
tages. In this paper, our analytical results are approx-
imated in the sense that only two modes, forward- and
back-scattered modes, of the same frequency, are consid-
ered. This is a good approximation, since in the wave-
guide only two SPP modes exist (forward and backward
propagating SPP modes). However we do neglect the
possible emission of radiation when the SPP impinges
on the grating. Indeed, in the context of scattering of
graphene’s SPP’s by abrupt interfaces, it has been shown
that the coupling of the SPP to the radiation modes is
weak22,23 and, therefore, the same is expected here. In
Ref. [23], we have found that for graphene plasmons the
losses due to radiative emission is proportional to the con-
trast of the refractive index ε1− ε2 (or the conductivities
σ1 − σ2), but even when σ2 > 2σ1, the losses due to the
radiative emission were less than 2%. In these systems,
the main mechanism for losses is the intrinsic damping
in the material. We note, however, that the formalism
is general and there is no impediment to the inclusion of
both radiative and evanescent modes in it. The price to
pay may be the lack of an analytical solution.

The paper is organized as follows: in Sec. II we sim-
plify the coupled-mode equations, expressing them in
terms of forward and back-scattered amplitudes. In Sec.
III we particularize coupled-mode equations to the case
where only two degenerate modes in frequency are cou-
pled and find a general solution using transfer-matrix
method for a square-wave Bragg grating. In Sec. IV (Sec.
V) the scattering of metallic SPP’s (graphene SPP’s)
from a Bragg grating is discussed. We conclude the paper
with a brief discussion in Sec. VI.

II. COUPLED-MODE THEORY EQUATIONS

The reader interested in a detailed derivation of the
coupled-mode theory is invited to read the supplemen-
tary information. Here, we study a metal-dielectric or
dielectric-dielectric interface, where a Bragg grating, ex-
tending over a finite region, is written on the surface of
the metal/dielectric. In addition, we also study the case
of alternating graphene strips with different conductivi-

FIG. 1. Unit cell of a dielectric grating. The bottom substrate
has dielectric function ε2(ω) < 0, the trench has dielectric
function ε3, and the top dielectric has dielectric function ε1.
Fig. 1 with the inclusion of alternating graphene strips with
different conductivities σ1 and σ2. We assume that a surface-
plasmon polariton is impinging from the left on the Bragg
grating and is scattered from it. The reflectance coefficient,
R, is computed using coupled-mode theory.

ties deposited a the surface, as can be seen in Fig. 1.
For solving the scattering problem, we firstly solve the

unpatterned waveguide problem, i.e., with translation
symmetry along the z axis. From this we obtain the cor-
responding electromagnetic normalized modes (see sup-
plementary material) Eν,t,Hν,t such that the power per
unit length transported along the z−direction is P. Af-
terwards, we decompose the propagating field inside the
patterned heterostructure as function of the eigenmodes
of the unperturbed waveguide:

Et =
∑
µ aµ(z)Eµ,t, (1)

Ht =
∑
µ bµ(z)Hµ,t, (2)

where the sum over µ has implicit summation and in-
tegration over both discrete and continuous modes, re-
spectively. Each mode coefficient aµ(z), bµ(z) can be
decomposed as function of right and left propagating co-
efficients:

bµ(z) = b+µ (z)eiβµz − b−µ̄ (z)e−iβµz, (3)

and

aµ(z) = b+µ (z)eiβµz + b−µ̄ (z)e−iβµz. (4)

Substituting back Eqs. (1–4) in the Maxwell equations,
we obtain the following coupled-mode equations:

db+µ
dz
− iβµb+µ =

∑
ν

K++
µ,ν b

+
ν +K+−

µ,ν b
−
ν . (5)

db−µ
dz

+ iβµb
−
µ =

∑
ν

K−+
µ,ν b

+
ν +K−−µ,ν b

−
ν , (6)

where the coupling coefficients are

Ks1s2
µ,ν = s1Kµ,ν(z) + s2kµ,ν(z), (7)
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where s1, s2 = ±1. and

Kµ,ν(z) =
iωε0
4P

∫
dx[ε(x, z)− ε(x)]E∗µ,xEν,x, (8)

kµ,ν(z) = − σ1

σ2(z)

[σ2(z)− σ1]

4P
E∗µ,z(0)Eν,z(0) +

+
iωε0
4P

∫
dx

ε(x)

ε(x, z)
(ε(x, z)− ε(x)) E∗µ,zEν,z.(9)

Here, the power per unit length transported along the
z−direction reads

P =
1

2

∫
dx<(Eν ×H∗ν) · ez =

β

2ωε0

∫
dx

1

ε(x)
Hν,yH∗ν,y.

(10)
Equations (5) and (6) describe the propagation of

a plasmonic wave along a heterostructure containing
graphene layers. The specific geometry and dielectric
information of the patterned heterostructure is encoded
into the coupling coefficients Kµ,ν(z) and kµ,ν(z). For
the specific case of a square-wave grating (Bragg grat-
ing), the integrals in (8) and (9) are analytical and they
will be given in the following sections. As we will see in
the next sections, for a square-wave grating it is possi-
ble to find an exact analytical solution of the system of
equations (5) and (6).

III. SOLUTION FOR A SQUARE-WAVE BRAGG GRATING

For a Bragg grating described by alternating dielectrics
(where inside each dielectric slab the permittivity de-
pends only on the transverse direction x) an exact solu-
tion can be obtained when only two modes are involved,
a situation appropriate to our case. Let us consider:

ε(x, z) =

{
ε̃(x), if nL < z < d1 + nL,

ε(x), if d1 + nL < z < (n+ 1)L,
(11)

with n an integer. The Bragg lattice has N unit cells.
In the lattice described by Eq. (11), the coefficient Kpq

µν

will be constant inside each slab. From now on we will
consider only two modes, the forward and back-scattered
with label µ. We simplify the notation so b+µ ≡ X and
b−µ ≡ Y . We define K++

µµ = −K−−µµ ≡ u and K+−
µµ =

−K−+
µµ = −v when nL < z < d1 + nL. Therefore, Eqs.

(5) and (6) can be written as a set of coupled differential
equations:

X ′ − iβX = uX + vY, (12)
Y ′ + iβY = −vX − uY. (13)

The transmission and reflection coefficients can be de-
fined as usual:

R =

∣∣∣∣Y (0)

X(0)

∣∣∣∣2 , (14)

T =

∣∣∣∣X(NL)

X(0)

∣∣∣∣2 . (15)

Next, we solve Eqs. (12) and (13) for 0 < z < d1.
From (13) we obtain:

X = −Y
′ + (iβ + u)Y

v
, (16)

which can be combined into a single equation for Y using
Eq. (12):

Y ′′ + (v2 + β2 − 2iβu− u2)Y = 0, (17)

and defining:

g =
√
v2 + (β − iu)2, (18)

the solution of Eq. (17) can be written as:

Y (z) = Y+e
igz + Y−e

−igz, (19)

with Y+ and Y− constants. Substituting back in Eq. (16)
we obtain:

X(z) = −Y+
ig + iβ + u

v

igz

− Y−
−ig + iβ + u

v
e−igz.

(20)
For obtaining the transfer matrix of the propagation

between z = 0 and z = d1, we need to write the compo-
nents Y (z = d1) and X(z = d1) as function of Y (z = 0)
and X(z = 0). Therefore, using Eqs. (19) and (20) for
z = 0 we obtain:

Y (0) = Y+ + Y− (21a)
X(0) = h+Y+ + h−Y−, (21b)

where we have defined h± = −±g+iβ+
v . For z = d1 we

find:

Y (d1) = Y+e
igd1 + Y−e

−igd1 , (22a)
X(d1) = h+Y+e

igd1 + h−Y−e
−igd1 . (22b)

From Eqs. (21) we have:

Y+ =
X(0)− h−Y (0)

h+ − h−
, (23)

Y− = −X(0)− h−Y (0)

h+ − h−
, (24)

and using Eqs. (24) in Eqs. (22) we obtain after some
algebra:

X(d1) = [cos(gd1) + i∆1 sin(gd1)]X(0)+

+∆2 sin(gd1)Y (0), (25a)
Y (d1) = −∆2 sin(gd1)X(0) + [cos(gd1)−

−i∆1 sin(gd1)]Y (0), (25b)

where we have defined ∆1 ≡ β−iu
g and ∆2 ≡ v

g , with
∆2

1 + ∆2
2 = 1. This defines the propagation along any

unit cell from z = nL to z = d1 + nL. The propagation
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from z = d1 + nL to z = (n + 1)L is given from the
solution of:

X ′ − iβX = 0,

Y ′ + iβY = 0, (26)

where the coupling constants Ks1,s2
µ,µ vanishes because of

the dielectric function (11). Therefore, we have the trivial
solution: X(z) = X(d1)eiβz and Y (z) = Y (d1)e−iβz.
The total transfer matrix of the propagation along an
entire unit cell is:

M =

(
eiθ2 0
0 e−iθ2

)(
cos θ1 + i∆1 sin θ1 ∆2 sin θ1

−∆2 sin θ1 cos θ1 − i∆1 sin θ1

)
,

where we defined θ1 ≡ gd1 and θ2 ≡ βd2, such that
the transfer matrix relating the right and left prop-
agating fields impinging on each face of a unit cell
[X((n+1)L), Y ((n+1)L)]T = M [X(nL), Y (nL)]T is (the
super-index T refers to the transpose operation):

M =

(
eiθ2 (cos θ1 + i∆1 sin θ1) eiθ2∆2 sin θ1

−e−iθ2∆2 sin θ1 e−iθ2 (cos θ1 − i∆1 sin θ1)

)
.

From the eigenvalues of the above matrix we can obtain
the Bloch phase γ:

cos γ = cos θ1 cos θ2 −∆1 sin θ1 sin θ2, (27)

and from the Chebyshev identity32 we can obtain the
transmission and reflection coefficients for the propaga-
tion along N unit cells:

T =
sin2 γ

sin2 γ + |∆2|2| sin θ1|2 sin2 (Nγ)
, (28)

R =
|∆2|2| sin θ1|2 sin2 [Nγ]

sin2 γ + |∆2|2| sin θ1|2 sin2 (Nγ)
. (29)

Therefore, we have obtained analytical formulas for the
propagation of two coupled modes. This formalism will
be used in the next two sections to obtain the propagation
properties of SPPs in metallic and graphene gratings.

IV. SPP SCATTERING FROM A METALLIC GRATING

In this section we consider the scattering of a SPP from
a Brag grating whose unit cell is represented in Fig. 1.
The dielectric function ε1 is vacuum, the dielectric ε2(ω)
represents the optical response of the metal below the
plasma frequency, and ε3 is another dielectric, in principle
different from ε1 and ε2(ω).

A. SPP fields and dispersion relation

Let us consider an interface between a metal and a di-
electric. The relative dielectric function of the metal is
in the spectral range where ε2(ω) < 0 and that of the

dielectric is ε1, and is assumed constant. The disper-
sion relation of a surface-plasmon polariton at a metallic
interface with a dielectric is given by31

q =
ω

c

√
ε1ε2(ω)

ε1 + ε2(ω)
. (30)

The field of the SPP has the form31

Eα(r, t) = (Eα,xex + Eα,zez)e
−κα|x|ei(qz−ωt), (31)

B(r, t) = Byeye
−κα|x|ei(qz−ωt), (32)

where α = 1, 2 defines the medium where the field is
located. Using Maxwell’s equations, we obtain

Eα,x = q
ωε0εα

Hy, (33)

Eα,z = −isgn(z) κα
ωε0εα

Hy, (34)

κα =
√
q2 − εαω2/c2. (35)

We note that Eα,x and Hy are the transverse fields,
whereas Eα,z is the longitudinal component. The usual
boundary conditions for the fields at an interface, E1,z =
E2,z and B1,y = B2,y, lead to the dispersion relation (30).
Note that ε1 and ε2 must have different signs for satis-
fying the first boundary condition. Therefore, an SPP
mode only exists when its frequency is below the plasma
frequency. Indeed, we can show from Eq. (30) that the
frequency region for the existence of the SPP obeys the
condition

ω <
ωp√
ε1 + 1

, (36)

where ωp is the plasma frequency of the metal. The de-
termination of the magnitude Hy follows from the nor-
malization condition (see the supplementary information
for a review), which has the form∫

dx
1

ε(x)
Hy(x)H∗y(x) = P 2ωε0

|q|
, (37)

or, in the case of the SPP field,∫ 0

−∞
dx

1

ε2
e2κ2xH2

y +

∫ ∞
0

dx
1

ε1
e−2κ1xH2

y = P 2ωε0
|q|

,

(38)
which leads to

⇔ H2
y = P 4ωε0

|q|
κ1κ2ε1ε2
κ1ε1 + κ2ε2

. (39)

B. Dielectric profile

The system upon which the SPP will scatter is a square
dielectric grating of period L = d1 + d2. As a function of
x, the dielectric profile reads

ε(x, z) =

{
ε3 for nL < z < d1 + nL

ε2(ω) for nL+ d1 < z < d1 + d2 + nL
(40)
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with n = 0, 1, 2, . . .. Once the dielectric profile is known,
we can compute the coupling constants Kµ,ν and kµ,ν
using Eqs. (8) and (9). Since ε(x, z) = ε(x, z + L), the

coupling constants are also periodic. In this case, because
the dielectric functions vary in a step-like manner, they
can be computed analytically, reading

Kq,q(z) =

{
i qε1(ε3−ε2)κ1 sinh(hκ2)e−hκ2

ε2(ε1κ1+ε2κ2) for nL < z < d1 + nL

0 for nL+ d1 < z < d1 + d2 + nL
, (41)

and

kq,q(z) =

{
i

(ε3−ε2)κ1κ
2
2 sinh(hκ2)e−hκ2

q(ε1κ1+ε2κ2) for nL < z < d1 + nL

0 for nL+ d1 < z < d1 + d2 + nL
, (42)

from where the coupling constant Ks1s2
q,q (7) follows; the

parameter h is the height of the dielectric well/barrier.
We note that the coupling constants Kq,q and kq,q are
zero when h → 0 or ε3 → ε2, which corresponds to the
perfect interface. Therefore, the reflectance coefficient R
is zero in these cases.

C. Results for a single barrier

FIG. 2. Reflectance coefficient. The plasma frequency was
chosen equal to ωp = 4 eV. We take ε3 = ε1 = 1 and
d1 = (1 + 1/4)λ0, with λ0 the plasmon wavelength for the
frequency ωspp = 0.6ωp/

√
2. (a) Reflectance as function of h.

(b) Reflectance as function of the frequency for h = λ0/2.
(c) Reflectance as function of the frequency and h. The
dielectric function of the metal is given by Drude formula
ε2(ω) = 1− ω2

p/ω
2.

We first consider the case of a single well of width d1

and height h. The results for the reflectance coefficient
are given in Fig. 2. In the first panel we see that R →0

FIG. 3. (a), (b) Reflectance of a Bragg grating with N = 10.
We have chosen λ0 the plasmon wavelength for the energy
of the SPP given by

√
2ωspp/ωp = 0.6, ε1 = 1, ~ωp = 4 eV,

d1 = d2 = h = λ0/2, ε3 = 1 − ω′
p
2
/ω2, and ω′

p = 2.3 eV. (c),
(d) Dispersion relation as function of the Bloch phase γ = kL,
with k the crystal wavenumber. The bandgaps coincides with
the total reflection, as expected. Note the different horizontal
scale in the left and right panels.

when h → 0, as discussed above. Also there are heights
different from zero for which there is perfect transmis-
sion. A similar phenomenon occurs when electrons are
scattered from a potential well. From the central panel
of the same figure we see that R → 0 when ω → 0,
which makes sense since in this case we have essentially
free radiation of very large wavelength and, therefore, un-
able to see the dielectric well. As ω approaches ωp/

√
2

we have R → 1. The last panel shows a study of R as
function of h and ω, showing that for h > 0.08λ0 the re-
flectance becomes insensitive to further increases in the
well height. The almost absence of oscillations of the re-
flectance comes from the fact that g2 < 0 [see Eq. (18)]
for the parameters used, such that the fields inside the
well are evanescent, as discussed in detail in the next
subsection.
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D. Results for a Bragg grating

For a Bragg grating the transmission and reflection
can be obtained from Eqs. (28) and (29), with the Bloch
phase given by Eq. (27). The propagation inside the di-
electric well is determined by the value of g2. For g2 > 0
we have sinusoidal transmission while for g2 < 0 we have
evanescent transmission, with g2 = 0 determining the
crossing between those two regimes. When κ2h� 1 and
ε3 = ε1 the function g2 will always be negative, resulting
in evanescent transport inside the dielectric well. In this
section we will study the case when the dielectric 3 is also
given by a metal with a corresponding dielectric function
ε3 = 1− ω′p

2
/ω2.

We show the results for the reflectance and disper-
sion relation in Fig. 3. We consider ~ωp = 4 eV and
~ω′p = 2.3 eV. The Bragg grating has N = 10, L = λ0,
d1 = d2 = L/2, where λ0 is the wavelength of the plas-
mon (30) for a frequency of 0.4ωp and ~ωp = 4 eV. We
have that g2 > 0 for ω < ω′p and g2 → [ω → ω′p]∞.
The divergence in g explains the large number of bands
slightly below the energy of 2.3 eV in the bottom panel
of Fig. 3. Note the correlation between the presence of
stop-bands in the spectrum of the SPP and the value of
1 for the reflectance.

V. SCATTERING OF GRAPHENE PLASMONS FROM A
DIELECTRIC BRAGG GRATING

Now we consider a system with the geometry of Fig.
1 but with a graphene sheet on top. Also, we consider
that conductivity of graphene is σ1 (σ2) when on top of
the dielectric ε2 (ε3), as shown in Fig. 1 . The presence
of a graphene sheet corresponds to including a surface
current in the Maxwell equation:

∇×H = σδ(x)E‖ − iωε0εE, (43)

where σ is the 2D graphene conductivity and the sheet
is located at the plane x = 0.

We consider, for simplicity, that the graphene conduc-
tivity is given by the Drude formula31:

σDrude =
4i

π

EFασ0

~ω + iΓα
, (44)

with σ0 = e2/(4~), EFα (α = 1, 2) the Fermi energy in
the graphene sheet relative to the Dirac Point, and Γα/~
is the relaxation rate. From now on we will consider
Γα = 0 as we are not interested in studying the effect
of intrinsic losses. In this case, the boundary condition
at the graphene interface leads to a different dispersion
relation (when compared to the metallic case) given by31

ε1
κ1

+
ε2
κ2

+ i
σ

ε0ω
= 0, (45)

whose solution in the electrostatic limit reads31

q =
ε1 + ε2

4

(~ω)2

αEF~c
, (46)

where α ≈ 1/137 is the fine structure constant and EF
is the Fermi energy of doped graphene. We note that,
in addition to a modification of the dispersion relation,
graphene plasmons exist as well defined excitation for
energy scales smaller than the Fermi energy, and there-
fore in a different frequency range from that observed for
noble metal plasmonics.

We can define a new dielectric tensor taking in account
the graphene’s conductivity:

ε̃(x) = ε+ ir̂
σδ(x)

ωε0
r̂·, (47)

with r̂ the unit vector along the plane that contains the
graphene sheet and where the last dot means a inner
product when applied to a vector field. Therefore Eq.
(43) becomes ∇×H = −iωε0ε̃(x)E.

With the presence of a graphene sheet, the tangential
magnetic field Hy is no longer continuous. Thus, we need
to calculate the new normalization in the sense of Eq.
(37), reading:

H2
2,y = P 4ωε0

|q|
κ3

1ε
2
2κ2

ε1κ3
2 + ε2κ3

1

, (48)

and the other components of the electromagnetic field
can be calculated from:

H1,y = −κ2ε1
κ1ε2

H2,y, (49a)

Eα,z = −iκαsgn(x)

ωε0εα
Hα,y, (49b)

Eα,x =
q

ωε0εα
Hα,y, (49c)

with α = 1, 2. Using Eqs. (48) and (49) in Eqs. (8) and
(9) we obtain:

Kq,q = iq(ε3 − ε2)
κ3

1

ε2κ3
1 + ε1κ3

2

sinh(κ2h)e−κ2h, (50)

kq,q =
σ1

σ2

σ1 − σ2

ωε0q

κ3
1κ

3
2

ε2κ3
1 + ε1κ3

2

+

+ i
ε2
ε3

(ε3 − ε2)κ2
2κ

3
1

q(ε2κ3
1 + ε1κ3

2)
sinh(κ2h)e−κ2h, (51)

where σα, with α = 1, 2, is the Drude conductivity (44).
In the following we will show how the formalism works

for two examples. First when EF1 = EF2 and ε2 6= ε3.
Next we show the results for EF1 6= EF2 and ε2 = ε3.

1. Different substrates and same conductivity

Firstly we show the results in Fig. 4 for a grating with
EF1 = EF2 and ε3 = ε1 = 1 and ε2 = 2. We can see
that the bandwidths decreases as we increase the SPP
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frequency. In the electrostatic limit and EF1 = EF2 we
can simplify the coefficients Kq,q, kq,q to:

Kq,q → iq
ε3 − ε2
ε2 + ε1

ζ

2
, (52)

kq,q → iq
ε2
ε3

ε3 − ε2
ε2 + ε1

ζ

2
, (53)

with ζ = 2 sinh(κ2h)e−κ2h and ζ → 1 when κ2h � 1.
In this case we have that the functions K++

qq = u and
K−+
qq = v are:

u = ζ
iq

2

ε23 − ε22
ε3(ε1 + ε2)

, (54)

v = −ζ iq
2

(ε3 − ε2)
2

ε3(ε1 + ε2)
, (55)

and we can calculate g from Eq. (18):

g = q
√
F (ε1, ε2, ε3, ζ), (56)

with:

F =
(ε1 + (1− ζ)ε2 + ζε3)((1 + ζ)ε3ε2 + 2ε3ε1 − 2ζε22)

ε3(ε1 + ε2)2
,

(57)
and thus the functions ∆1 = (β − iu)/g and ∆2 = v/g
that appear inside the transfer matrix (27) are given by:

∆1 =
1

2

2ε3(ε1 + ε2)
√
F + ζε23 − ζε22

ε3(ε1 + ε2)
√
F

, (58)

∆2 = −ζ i
2

(ε3 − ε2)
2

ε3(ε1 + ε2)
√
F
, (59)

note that as ω (or q) increases we have ζ → 1. If we ignore
the dependence on frequency of the dielectrics constants,
the functions ∆1 and ∆2 will become frequency inde-
pendent and also do the propagation properties that are
expressed in the transfer matrix approach by Eq. (28).
This depends only on the angles θ1, θ2, both proportional
to q ∝ ω2. We show the periodic dependence of the re-
flection as function of q in Fig. 5. In the same figure the
stop-band appears for q = 2π

λ0
(2j + 1), with j an integer.

As before, there is a correlation between the presence of
stop-band and the reflectance equal to 1.

2. Different conductivities and same substrate

Next we show in Fig. 6 the results for a grating of
alternating strips of graphene with different Fermi ener-
gies deposited on the same substrate with dielectric con-
stant ε2. For the widths we used d1 = d2 = λ0/2, where
λ0 ≈ 9µm is the graphene plasmon wavelength obtained
from Eq. (46) for EF1 = 0.3 eV and ~ω = EF1/2. We
can see that the first stop-band is centered in the fre-
quency ≈ 0.27EF1/~. Compared to the previous section,

we did not impose the phase matching θ1 = θ2 condi-
tion. Therefore, there is no simple relation between the
stop-band frequency and λ0 for the chosen parameters.
However, we will show in the following that such condi-
tion can also be obtained in this case.

In the electrostatic limit we can obtain g, ∆1, and ∆2

when ε2 = ε3 as:

g2 = 2q1q2 − q2
1 = q2

1

(
2
EF1

EF2
− 1

)
, (60)

∆1 =
q2√

2q1q2 − q2
1

=
EF1√

2EF1EF2 − E2
F2

, (61)

∆2 =
i(q2 − q1)√
2q1q2 − q2

1

=
i(EF1 − EF2)√
2EF1EF2 − E2

F2

, (62)

with qi obtained using EF = EFi with i = 1, 2 in Eq.
(46).

In this limit the functions ∆i do not depend on
the plasmon frequency and g = q1

√
F ′, with F ′ =

2EF1/EF2 − 1. As we discussed in the previous section,
we can also find the condition for the phase matching
θ1 = θ2:

√
F ′d1 = d2. (63)

Thus, we can engineer a stop-band for any given fre-
quency adjusting d1, d2. Also, as discussed in the previ-
ous subsection, the spectra for ω →∞ becomes periodic
with respect to q ∝ ω2, a result that comes from the
parameters ∆i becoming frequency independent.

In Fig. 7 we show the reflectance as function of EF2−
2EF1 and the plasmon frequency. When EF2−2EF1 > 0,
we have that g2, given by Eq. (60), is negative, imply-
ing evanescence transport and explaining the large bright
area with R = 1.

For EF2 → 0, we have that g/q1 → ∞, meaning
that the wavelength in the region with σ2 will be sig-
nificantly smaller than the wavelength of the incoming
plasmon, making the system acting as a Fabry-Pèrot
cavity, explaining the large number of fringes around
EF2 − 2EF1 ≈ −0.5 eV, that is, when EF2 ≈ 0. When
EF2 ≈ EF1, that happens for EF2 − 2EF1 = −0.26 eV
and the reflectance goes to zero, as expected. We can also
see that in respect to the difference ∆EF = EF2 − EF1

the reflectance is asymmetric. This also happens for an
electron scattering through a square well: the reflectance
have different behavior if the square well is positive or
negative.

VI. CONCLUSIONS

We have used coupled-mode method and transfer ma-
trix theory for describing the scattering of a metallic SPP
and a graphene SPP from a square-wave Bragg grating
written on the interface between a metal and a dielectric
and between two different dielectrics, respectively. The
method allows for simple analytical expressions for the
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FIG. 4. (a) Reflectance of a graphene SPP from a Bragg grat-
ing with lengths 1L, 2L, and 10L. The dielectrics constants
are ε1 = ε3 = 1 and ε2 = 2. Also we have EF1 = EF2 = 0.5
eV. We have fixed the wavelength of the plasmon λ0 for the
frequency ~ω0 = 1.1EF1 and we used h = λ0, d1 = λ0/(4

√
F ),

and d2 = λ0/4, with F given by Eq. (57). This choice makes
θ1 = θ2. We can see a gap opening at the frequency 1.1EF1/~.
(b) The respective dispersion relation of the plasmonic crys-
tal.

FIG. 5. Periodicity of the reflection as function of the
wavenumber q using the same parameters of Fig. (4). The
periodicity is a consequence of the phase matching θ1 = θ2
between the two different cells of the Bragg grating. The
stopbands appears when qλ0 = 2π(1+2n), with n an integer.

reflection coefficient R and the dispersion relation of the
Bragg grating. Our results are valid within the approxi-
mations that the coupling of the SPP mode to radiation
and evanescent modes is small. Relaxing this approxi-
mation is possible, but analytical results are no longer
available.

We used the analytical results to study the reflec-
tion and dispersion relation for different plasmonic Bragg
gratings. We characterized the condition for having si-
nusoidal or evanescent transport. For a Bragg grating

FIG. 6. (a) Reflectance of a graphene SPP from a Bragg
grating with N = 10 unit cells. Parameters: ε1 = 1, ε2 =
ε3 = 4,EF1 = 0.3 eV, EF2 = 0.55 eV, λ0 is the wavelength for
a frequency of ~ω = EF1/2 and we fixed d1 = d2 = λ0/2. (b)
Dispersion relation for the plasmonic crystal.

FIG. 7. Reflectance of a graphene SPP from a single unit cell
as function of the difference in the Fermi energy and incoming
SPP frequency. The bright region that appears when EF2 −
2EF1 > 0 is a consequence of the evanescent transport along
the graphene strips in the σ2 region. The parameters are
chosen as: ε1 = 1, ε2 = ε3 = 4, EF1 = 0.26 eV. λ0 is the
wavelength for a plasmon frequency of 0.2EF1/~ and d1 =
d2/2 = λ0/4.
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consisting of alternating metals with different plasmonic
frequencies, we show that there will be an infinite number
of bands when the grating metal has a lower plasmonic
frequency than the substrate metal.

We have also shown that the transfer matrix parame-
ters for graphene SPPs are frequency independent in the
electrostatic limit. With this result we could find the
condition for phase matching of the traveling wave in-
side each component of the Bragg grating, thus finding
the condition for engineering a stop-band for any given
frequency.

Finally, comparing our model with a fully numerical
calculation3 we find the same qualitative behavior, with
two small differences: 1) the reflection obtained with our
method is larger; 2) the stop band frequency is slightly
different. These small differences are due to the consid-
eration of losses in Ref.3. On the other hand, it is well
known that graphene plasmons on h-BN have very low
losses33. Therefore, if we consider a h-BN buffer layer
between graphene and the Bragg grating we expect our
model to show a fully quantitative agreement with nu-
merical solver software.

VII. SUPLEMENTARY MATERIAL

A detailed presentation of coupled mode theory is given
in the supplementary information.
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