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Abstract 

 

Rytov's theory of thermally generated radiation is used to find the noise in two-

dimensional passive guides based on an arbitrary distribution of lossy isotropic dielectric. 

To simplify calculations, the Maxwell curl equations are approximated using difference 

equations that also permit a transmission-line analogy and material losses are assumed to 

be low enough for modal losses to be estimated using perturbation theory. It is shown that 

an effective medium representation of each mode is valid for both loss and noise, and 

hence that a one-dimensional model can be used to estimate the best achievable noise 

factor when a given mode is used in a communications link. This model only requires 

knowledge of the real and imaginary parts of the modal dielectric constant. The former 

can be found by solving the lossless eigenvalue problem, while the latter can be estimated 

using perturbation theory. Because of their high loss, the theory is most relevant to 

plasmonic waveguides, and its application is demonstrated using single interface, slab 

and slot guide examples. The best noise performance is offered by the long-range 

plasmon supported by the slab guide. 
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Loss, Noise, Fluctuation-dissipation theorem 

PACS numbers 41.20.-q Applied classical electromagnetism 

   73.20.Mf Surface plasmons 

07.50.Hp Noise, electrical circuits



3 

1. Introduction 

 

The development of long-distance optical communications was a major technological 

success of the 21st century. Necessary conditions were the availability of waveguides with 

low dispersion and low loss. Alternative structures based on metals and dielectrics – 

plasmonic guides – are being proposed for on-chip communication [1-3]. However, 

collision damping in metals causes high attenuation. Consequently, there has been 

intensive interest in arrangements with low loss. The earliest example is the ‘long-range’ 

plasmon supported by a thin metal slab, which achieves its effect by extending the modal 

field outside the metal [4-6]. Narrow metal strips, which loosen the confinement further, 

are now being investigated [7-9], as are wires [10-12], slots [13-16] and grooves [17-19]. 

Amplification using a dye has also been proposed to compensate for losses [20, 21]. 

 

Communication systems also suffer from noise. In fibre optics, propagation loss is so low 

that the focus is on amplified spontaneous emission in amplifiers [22-24] and Johnson 

and shot noise in the receiver [25]. Noise theories have already been developed for active 

plasmonics [26, 27] and their implications are being explored [28]. However, because 

losses are much higher in plasmonics, thermal noise may be more significant. Noise was 

first observed experimentally in resistors by Johnson [29], and its relation to loss 

explained in classical and quantum-mechanical terms by Nyquist [30] and Callen and 

Welton [31]. The general relation is known as the fluctuation-dissipation (FD) theorem. 

In the 1950s, Rytov developed a model for thermal radiation by adding sources derived 

from the FD theorem to the Maxwell curl equations [32]. However, Rytov only explored 



4 

simple waveguide problems, the effect of walls or inclusions in hollow waveguides [33]. 

Emission from such guides forms the basis of microwave noise standards [34]. 

 

Rytov's methods are hard to apply to general geometries. Spurred by the development of 

metamaterials, for which an equivalent circuit model is realistic, we have developed a 

transmission line approach to one-dimensional (1D) thermal noise, which involves 

replacement of differentials with discrete equivalents [35]. The problem of integrating the 

effect of noise sources is then replaced with summation. Analytic proofs – that noise is 

linked to effective medium properties – may then be arrived at easily. Emission and 

related metrics such as the noise factor may be computed directly, and additional effects 

such as noise carried by internal lattice waves may also be incorporated [36]. 

 

Here, we adapt the method to more general 2D guides. Once again, we use difference 

equations that allow a transmission-line analogy. To simplify calculations, losses are 

assumed to be low, so perturbation theory can be used. Because most dielectric guides 

have low loss and TEM-like modes, there are few literature discussions of loss or 

polarization effects. An exception is the difference between TE and TM mode gain in 

semiconductor lasers [37, 38]. However, losses are much higher in plasmonics, and 

polarization is crucial. Here both polarizations are considered together. The aim is to 

prove that modal noise is directly linked to modal effective medium properties, and hence 

that noise can be computed directly in a 1D calculation. If this can be done, thermal noise 

may easily be incorporated into transmission line models of plasmonics [39], or network 

models of amplification [40]. The wave equation is discussed in Section 2, the waveguide 
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equation in Section 3, and perturbation expressions for loss in Section 4. The link 

between modal noise and loss is derived in Section 5, and a method of calculating the 

noise factor in Section 6. The performance of three different plasmonic waveguides is 

compared in Section 7, and conclusions are drawn in Section 8. 
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2. The discrete model and the wave equation 

 

We first develop a transmission line representation for the geometry of Figure 1a, namely 

a z-propagating waveguide described by a general dielectric constant variation ε(x) in the 

transverse direction. The Maxwell curl equations reduce to: 

 

TE: ∂Hx/∂z - ∂Hz/∂x = +jωεEy  TM: ∂Ex/∂z - ∂Ez/∂x = -jωµ0Hy 

∂Ey/∂z = +jωµ0Hx    ∂Hy/∂z = -jωεEx 

∂Ey/∂x = -jωµ0Hz    ∂Hy/∂x = +jωεEz 

(1) 

Here Ex, Ey and Ez and Hx, Hy and Hz are x-, y- and z-components of the time-independent 

electric and magnetic fields at angular frequency ω, and µ0 and ε are the permeability of 

free space and the more general permittivity. We represent both polarizations using the 

2D transmission-line model of Figure 1b. Here the lattice is of side a, the fields are 

represented by a nodal voltage Vm,n and line currents IXm,n and IZm,n, and material 

parameters are represented using per-unit length inductance and capacitance LPm and CPm 

that vary only with the transverse index m. The circuit equations are: 

 

(IXm,n - IXm-1,n)/a + (IZm,n - IZm,n-1)/a = -jωCPmVm,n 

 (Vm+1,n - Vm,n)/a = -jωLPmIXm,n 

(Vm,n+1 - Vm,n)/a = -jωLPmIZm,n 

(2) 

Comparison with (1) shows that the field and circuit quantities must map together as 
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shown in Table I.  The transmission line must then be different for each polarization. For 

TE (Figure 2a), the series inductors represent magnetic properties and the shunt 

capacitors dielectric properties. For TM (Figure 2b), it is the other way around. This 

conclusion is counter-intuitive, but the circuit analogy is best considered as an aid to 

calculation rather than a physical model. The effect of noise in the dielectric may then 

conveniently be represented by shunt current sources Jm,n (for TE) and series voltage 

sources UXm,n and UZm,n (for TM). Their values will be discussed later. 

 
 CPm LPm Vm,n IXm,n IZm,n 

TE ε(x) µ0 Ey(x, z) Hz(x, z) -Hx(x, z) 

TM µ0 ε(x) Hy(x, z) -Ez(x, z) Ex(x, z) 

Table I. Mapping of electromagnetic field and transmission line quantities for TE and TM 

modes. 

 

When single modes are propagating, it would be desirable to reduce the circuits to 1D 

equivalents as shown in Figures 3a (for TE) and 3b (for TM). Here εν is the effective 

dielectric constant of the νth mode, and Jνn are current sources (for TE) and Uνn are voltage 

sources (for TM) that describe the dielectric noise coupled into the νth mode. Also shown 

are source and load components, which will also be discussed later. Generally there will 

be a set of 1D effective medium models, one for each mode. 

 

To derive the wave equation for the discrete model it is helpful to define column vectors 

Xn with Xn(m) = Xm,n that represent all values of a field quantity for a given n, and 

diagonal matrices Y with Y(m, m) = Ym that represent material parameters. It is also 

useful to define first-order backward and forward difference operators ΔBn and ΔFn for the 
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n-direction such that ΔBnXn = (Xn - Xn-1)/a and ΔFnXn = (Xn+1 - Xn)/a.  Clearly, ΔFnΔBnXn = 

(Xn+1 - 2Xn + Xn-1)/a2. We may refer to this quantity as Δn
2Xn, where Δn

2 is a second-order 

difference operator. Similar matrix operators ΔBm and ΔFm can be defined for the m-

direction; these are banded matrices such that ΔBm(m, m) = 1/a, ΔBm(m, m-1) = -1/a, 

ΔFm(m, m) = -1/a and ΔFm(m, m+1) = 1/a. Again, ΔBmΔFm = ΔFmΔBm = Δm
2, where Δm

2 is a 

banded matrix with Δm
2(m, m-1) = 1/a2,  Δm

2(m, m) = -2/a2 and Δm
2(m, m+1) = 1/a2. With 

this notation, (2) becomes:  

 

ΔBmIXn + ΔBnIZn = -jωCPVn 

ΔFmVn = -jωLPIXn 

ΔFnVn = -jωLPIZn 

(3) 

This approach is clearly directly analogous to the well-established transmission-line 

matrix method [41, 42], and related to the method of lines [43], which only uses 

discretization in one direction. Elimination of the currents IXn and IZn then yields the wave 

equation: 

 

ΔBmLP
-1ΔFmVn + LP

-1Δn
2Vn + ω2CPVn = 0 

(4) 

The analysis can be used for TE or TM, merely by assuming the correct values of LP and 

CP from Table I.  In terms of a diagonal relative dielectric constant matrix εr, we obtain: 

 

Discrete    Continuous 
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TE:  (Δm
2 + Δn

2 + k0
2εr)Vn = 0  ∂2Ey/∂x2 + ∂2Ey/∂z2 + k0

2εrEy = 0 

TM: (ΔBm εr
-1 ΔFm + εr

-1Δn
2 + k0

2)Vn = 0 ∂/∂x{1/εr ∂Hy/∂x} + (1/εr)∂2Hy/∂z2 + k0
2Hy = 0 

 (5) 

where k0
2 = ω2µ0ε0. Here we also show the continuous equations [44], which correspond. 
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3. The waveguide equation and modal solutions 

 

Assumption of a modal solution Vn = v exp(-jβna) where v is a fixed vector and β is the 

propagation constant then yields the waveguide equation: 

 

ΔBmLP
-1ΔFm v + ω2CPv + (2/a2){cos(βa) - 1}LP

-1v = 0 

(6) 

This equation can now be recast as a generalized eigenvalue problem, namely: 

 

Av = λBv 

(7) 

where A = ΔBmLP
-1ΔFm + ω2CP, B = LP

-1 and λ = (2/a2){1 - cos(βa)}. Equation 7 replaces 

the problem of solving Maxwell’s equations with that of finding the eigenvectors of a 

matrix. There is no need for boundary matching, and arbitrary permittivity variations may 

be incorporated, including steps. It has set of eigensolutions, which should be compared 

with the modes Ey = Eµ(x)exp(-jβµz) (for TE) and Hy = Hµ(x)exp(-jβµz) (for TM) in the 

continuous model. Clearly the eigenvectors vµ correspond to the transverse fields Eµ or Hµ. 

Since λ ≈ β2 if βa is small, the eigenvalues λµ correspond to the squares of the 

propagation constants βµ

2. Writing βµ

2 = k0
2εrµ, where εrµ is a relative dielectric constant for 

the mode, we obtain the waveguide equations: 

 

 Discrete    Continuous 

TE: (Δm
2 + k0

2εr)vµ = k0
2εrµvµ  d2Eµ/dx2 + k0

2εrEµ = k0
2εrµEµ 
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TM: (ΔBmεr
-1ΔFm + k0

2)vµ = k0
2εrµ εr

-1vµ d/dx {1/εr dHµ/dx} + k0
2Hµ = k0

2εrµHµ/εr 

(8) 

Here we also show the continuous equations [44], which again correspond. 

 

When A and B are symmetric and loss-less, different eigenvectors vν and vµ must satisfy 

the orthogonality relation vν*TBvµ = 0. When ν ≠ µ, we then obtain  

 

 Discrete    Continuous 

TE: vν*Tvµ = 0    -∞∫
∞ Eν*Eµ dx = 0 

TM: vν*Tεr
-1vµ = 0    -∞∫

∞ Hν*(1/εr)Hµ dx = 0 

(9) 

For dielectric guides, transverse fields are normalised so that the inner products above 

yield delta functions δνµ, simplifying subsequent calculations. However, because εr is 

negative in a lossless metal, TM inner products must be negative for modes that have 

their field concentrated in metal. Because these modes cannot then be normalised to 

unity, we will work with un-normalised fields. 

 

The time-averaged power is P = 1/2 Re(IZn*TVn). If only the µth mode is propagating, so 

that Vn = aµvµ exp(-jβµna), we obtain the following expressions for power: 

 

 Discrete    Continuous 

TE: Pµ = (βµ/2ωµ0)aµaµ*(vµ*Tvµ)  Pµ = (βµ/2ωµ0)aµaµ*(-∞∫
∞ Eµ*Eµ dx) 
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TM: Pµ = (βµ/2ωε0)aµaµ*(vµ*Tεr
-1vµ) Pµ = (βµ/2ωε0)aµaµ*{-∞∫

∞ Hµ*(1/εr)Hµ dx} 

(10) 

Once again, we have compared the discrete equations with their continuous counterparts. 

 

The eigensolutions will include both guided and radiation modes. However, because the 

matrix must in practice be finite in size, the calculation window must also be restricted. 

With minor modifications (to ensure continuity of diagonal elements of the matrix ΔBmLP
-

1ΔFm) the effect is to introduce perfect conductor boundaries. Guided modes may be 

modeled realistically, by choosing the range of m so that their transverse fields are 

sufficiently confined inside the window. However, the spectrum of radiation modes will 

be discretized, and general calculations will show spurious effects caused by boundary 

reflection. These may be reduced, by introducing absorbing boundary elements [43]. 
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4. Loss 

 

The effect of introducing loss to an otherwise loss-less guide can be estimated using 

perturbation theory. A standard result of the generalized eigenvalue problem is that the 

first-order change Δλµ in λµ caused by changes ΔA and ΔB to A and B is: 

 

Δλµ = {vµ*TΔAvµ - λµvµ*TΔBvµ}/(vµ*TBvµ) 

(11) 

Ιn terms of changes ΔLP and ΔCP to LP and CP, we can write  ΔA = -ΔBmΔLPLP
-2ΔFm + 

ω2ΔCP and ΔB =  -ΔLPLP
-2. Here, we will be interested in perturbations caused by the 

introduction of loss to a previously loss-less system. If we write complex dielectric 

constants and eigenvalues as ε = ε' - jε'' and as λµ = λµ' - jλµ'', Equation 11 will allow 

determination of the value of λµ'' caused by ε''. Such results are again usefully expressed 

in terms of relative dielectric constants, as: 

Discrete 

TE: εrµ'' =  (vµ*Tεr''vµ) /(vµ*Tvµ) 

TM: εrµ'' = {εrµ'vµ*Tεr''εr'-2vµ - (1/k0
2)vµ*TΔBmεr''εr'-2ΔFmvµ}/(vµ*Tεr'-1vµ) 

Continuous 

TE: εrµ'' = {-∞∫∞ Eµ*εr''Eµ dx}/{-∞∫
∞ Eµ*Eµ dx} 

TM: 

εrµ''  = {-∞∫∞ εrµ'Hµ*(εµ''/εr'2)Hµ  - (1/k0
2)Hµ*d/dx[(εr''/εr'2)dHµ/dx] dx}/{-∞∫

∞ Hµ*εr
-1Hµ dx} 

(12) 
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5. Noise 

 

If the effect of modal noise may be represented by sources Jm,n (for TE) and UXm,n and 

UZm,n (for TM), the loss terms above should define the noise. To prove this, it is necessary 

to find the noise coupled into the µth mode from the sources in the 2D model, and show 

that the value corresponds with the 1D model. To do so, we follow Rytov’s procedure. 

 

TE modes 

 

The calculation is simplest for TE modes (Fig. 2a). We first note that it is only necessary 

to show that the results match along one line, say n = 0, and that the noise sources are 

independent. We therefore start by considering a single source at (0, 0). Its effects are 

readily included in Equations (2) or (3). The TE wave equation (8) will be valid except 

on n = 0, where there must be an additional excitation term on the RHS: 

 

(Δm
2 + Δn

2 + k0
2εr)V0 = -j(ωµ0/a)J0,0δ(0) 

(13) 

Here δ(0) is a vector containing a single unit element at m = 0. Clearly, the source will 

radiate in all directions, and excite all the modes in some proportion. However, symmetry 

implies that the overall solution must have the form: 

 

Vn = µΣ aµvµ exp(-jβµna) for n ≥ 0 

Vn = µΣ aµvµ exp(+jβµna) for n ≤ 0 
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(14) 

Here, the coefficients aµ are unknown modal amplitudes. These solutions satisfy the TE 

wave equation automatically for n ≠ 0. Exactly on n = 0, however, we get: 

 

µΣ aµ{Δm
2 + 2[exp(-jβµa) - 1]/a2 + k0

2εr}vµ = -j(ωµ0/a)J0,0δ(0) 

(15) 

Eliminating terms using the TE waveguide equation, and assuming that βµa is small, this 

result simplifies to µΣ aµβµvµ = (ωµ0/2)J0,0δ(0). Pre-multiplying both sides by vν*T and 

making use of TE mode orthogonality we may extract the mode amplitude aν as 

 

aν = (ωµ0/2βν)vν0*J0,0/(vν*Tvν) 

(16) 

From the above we may then obtain aνaν* = (ωµ0/βν)2vν0*(J0,0J0,0*/4)vν0/(vν*Tvν)2 and an 

analogous expression for a source at a different point (m, 0). Since the sources are 

independent, we may sum these terms incoherently to obtain the total effect as: 

 

aνaν* = (ωµ0/βν)2{mΣ vνm*(Jm,0Jm,0*/4)vνm}/(vν*Tvν)2 

(17) 

The values of the thermal sources Jm,0 are defined by the FD theorem, which implies that 

an admittance Y will give rise to a current J whose RMS value in a frequency interval df 

is JJ* = 4WRe(Y)df. Here W = (hf/2)coth(hf/KΘ) is the mean energy at absolute 

temperature Θ of an oscillator of natural frequency ω = 2πf, and h and K are Planck’s and 

Boltzmann’s constants. Here, Y = jωε0(εrm' - jεrm'')a, so Jm,0Jm,0* = 4Wωε0εrm''adf. Hence 
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we may write: 

 

aνaν* = (ωµ0/βν)2(Wωε0adf){mΣ vνm*εrm''vνm}/(vν*Tvν)2 

(18) 

Now, the term mΣ vνm*εrm''vνm will be recognised as vν*Tεr''vν. Comparison with Equation 

(12) then shows that aνaν* = (ωµ0/βν)2Wωε0εrν''adf / (vν*Tvν). For RMS values - which 

require multiplication of expressions in (10) by two - the noise power coupled into the νth 

mode at n = 0 is then: 

 

PνTE2 = (ωµ0/βν)Wωε0εrν''adf 

(19) 

Considering now the 1D TE model of Fig. 3a, it is simple to show that βν

2 = k0
2εrν, so the 

2D and 1D TE models are equivalent as far as propagation is concerned. It is also simple 

to show that the effect of a single current source Jν0 at n = 0 is to launch a pair of counter-

propagating voltage waves whose forward amplitude is Aν = (ωµ0/βν)Jν0/2. For RMS 

values, the power carried by this wave is PνTE1 = (ωµ0/βν)Jν0J ν0*/4. Now, from the FD 

theorem, the sources in the 1D model satisfy Jν0Jν0* = 4Wωε0εrν''adf. Consequently, PνTE1 is 

exactly as given in (19), and the 2D and 1D TE mode systems are also equivalent as far 

as noise power is concerned. 

 

TM Modes 

 

We now repeat the process for the TM model of Fig. 3b. The calculation is more difficult, 
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since there are two sets of sources that generate more complicated effects. However, we 

again need only show that the 2D and 1D results match on n = 0. We begin by 

considering the voltage sources UZm,n, and to start with allow a source only at (0, 0). 

Generally the TM wave equation in (8) will be valid. However, there must now be an 

excitation term on the RHS at m = 0 for two lines, n = 0 and n = 1. Here, we get: 

 

(ΔBmεr
-1ΔFm + εr

-1Δn
2 + k0

2)V0 = (1/εr0a2)UZ0,0δ(0) 

(ΔBm εr
-1ΔFm + εr

-1Δn
2 + k0

2)V1 = -(1/εr0a2)UZ0,0δ(0) 

(20) 

The source will again excite waves in all directions on a 2D plane. This time, the 

excitation suggests an anti-symmetric response, of the form: 

 

Vn = µΣ -aµvµ exp(+jβµna) for n ≤ 0 

Vn = µΣ aµvµ exp{-jβµ(n-1)a} for n ≥ 1 

(21) 

Substitution into either of Equations (20) gives the same result, so only one need be 

considered. Following a similar procedure (eliminating terms using the TM waveguide 

equation, assuming small βµa, pre-multiplying both sides by vν*T and making use of TM 

mode orthogonality), the amplitude aν can be found. The effects of all the sources UZm,0 

may then be found as: 

 

aνaν* = mΣ vνm*(UZm,0UZm,0*/4)(1/εrm
2)vνm/(vν*Tεr'-1vν)2 

(22) 
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Once again, the FD theorem specifies the sources, as UZm,0UZm,0* = 4Wωε0εrm''adf. 

Substituting into (22) then yields: 

 

aνaν* =  (Wωε0adf )vν *Tεr''εr
-2vν/(vν*Tεr'-1vν)2 

(23) 

We must now repeat the process for the sources UXm,n, again starting with a single one at 

(0, 0). Once there must now be additional excitation terms in the wave equation at n = 0. 

This time, equations at m = 0 and m = 1 are affected, and: 

 

 (ΔBmεr
-1ΔFm + εr

-1Δn
2 + k0

2)V0 = -(1/εr0a)UX0,0ΔFmδ(0) 

(24) 

This time the response must be symmetric, so we assume: 

 

Vn = µΣ aµvµ exp(-jβµna) for n ≥ 0 

Vn = µΣ aµvµ exp(+jβµna) for n ≤ 0 

(25) 

Following the same procedure, the effect of all the noise sources may be obtained as: 

 

aνaν* = -(1/βν

2)(Wωε0adf ) vν*TΔBmεr''εr
-2ΔFmvν /(vν*Tεr'-1vν)2 

(26) 

The combined effect of both sets of noise sources is then: 

 

aνaν* =  (Wωε0adf ){vν *Tεr''εr
-2vν - (1/βν

2)vν*TΔBmεr''εr
-2ΔFmvν}/(vν*Tεr'-1vν)2 
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(27) 

Comparison with the result of perturbation theory (12) shows that the two separate loss 

terms are directly linked to the two noise terms, and that aνaν* =  (1/εrν')Wωε0ε 

rν''adf/(vν*Tεr'-1vν). For RMS values, the power coupled into the νth mode at n = 0 is: 

 

PνTM2 = (βν/ωεν')Wωε0εrν''adf  

(28) 

For the 1D model of Fig. 3b, βν

2 = k0
2εrν as before, so the 2D and 1D TM models are again 

equivalent as far as propagation is concerned. The effect of a single voltage source Uν0 at 

n = 0 is to launch counter-propagating waves with equal and opposite amplitudes. For the 

forward-going wave, the amplitude is Aν = Uν0/2 and the power is PνTM1 = 

(βν/ωεν')Uν0Uν0*/4. From the FD theorem, Uν0Uν0* = 4Wωε0εrν''adf. Consequently, PνTM1 is 

then as given in (28), and the 2D and 1D TM models are equivalent for noise. Thus, the 

reduction from Figures 2 to 3 is entirely robust. Furthermore, since βν

2 = ω2µ0εν', PνTE1 = 

PνTM1 so the noise power is independent of polarization, and simply depends on the loss. 

In fact, both can be expressed as Pν = ZνWωεν''adf, where Zν = √(µ0/εν) is the characteristic 

impedance of the νth mode.
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6. Noise factor 

 

We now use the 1D model to estimate the performance of a waveguide link. We assume 

the source emits a signal power PS and noise PSN, so that the input signal-to-noise ratio 

(SNR) is PS/PSN. We also assume the link has transmittance T and emits a forward noise 

power PN, so that the output SNR is PST/(PSNT + PN). Hence the noise factor F is: 

 

F = 1 + PN/PSNT 

(29) 

F may therefore be found by adding a noisy source to a noisy circuit and calculating the 

powers PSNT and PN reaching the load. For TE modes, the complete circuit is as shown in 

Figure 3a. Here, the source and load have real impedance ZS. Assuming (as here) that the 

standard noise temperature is Θ, the effective input noise temperature Θn may then be 

related to the noise factor as Θn = Θ(F – 1) = ΘPN/PSNT. 

 

We now assume that the source is thermal, and at the same temperature Θ. Consequently, 

the RMS value of the source noise voltage US is USUS* = 4WZSdf. If in addition the 

source and load are free space, we can put ZS = √(µ0/ε0). PSNT may be found by 

calculating the load power with only the source noise US present. Similarly, PN may be 

found by summing the load powers from each of the waveguide noise sources Jνn. The 

noise figure NF can then be found as 10 log10(F). If the bandwidth is wide, all 

contributions to noise must be integrated in frequency. Simplifications arise if the 



21 

bandwidth is narrow, when df may be used simply as a multiplier. In this case, the 

oscillator energy W in PN and PSN must cancel in F. 

 

For TM modes, the complete circuit is as shown in Figure 3b. Here the source and load 

have characteristic impedance YS = 1/ZS, and the source noise is generated by a current 

source JS, whose RMS value is JSJS* = 4WYSdf. With these assumptions, the nodal 

equations for TE and TM are the same if currents are exchanged for voltages. 

Consequently, all powers must also be the same, as must be the noise factor. TE and TM 

modes can therefore both be modelled using Figure 3a; this circuit is analogous to one 

derived in [35] for lossy slabs. 

 

Since the discontinuities at the input and output are purely changes in impedance, the 

circuit models the system in Figure 3c. Here lossless optics couple a beam from free 

space into the guide, and then back into free space. The optics must act as a mode filter, 

to avoid excitation of modes other than the νth at the input, and to collect power only from 

this mode at the output. If it does not, less power will be coupled into the νth mode 

(reducing PSN) and thermal noise will be detected from other modes (increasing PN). 

Because both effects increase F, (29) is a lower bound.
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7. Plasmonic waveguides 

 

We now present examples from plasmonics. For simplicity we assume that all dielectric 

is air (εrd = 1), and that all metal can be described using the Drude model: 

 

εrm = 1 - ωp
2/(ω2 - jωωτ) 

(30) 

Here ωp and ωτ are the plasma and collision damping frequencies. We assume that the 

metal is silver (with ωp = 12.2 x 1015 rad/s and ωτ = 0.09 x 1015 rad/s). For angular 

frequencies ω significantly above ωτ we may use the approximation εrm = εrm' - jεrm'', 

where εrm' = 1 - ωp
2/ω2 and εrm'' = ωp

2ωτ/ω3. 

 

Lossless plasmonic guides 

 

We consider three different plasmonic guides: the single-interface (Figure 4a), slab 

(Figure 4b) and slot (Figure 4c). In each case, the lossless solutions are well known [13]. 

 

The single interface supports a solitary guided mode, whose magnetic field is: 

 

Hy(x) = H0exp(-γmPx) for x ≥ 0 

Hy(x) = H0exp(γdPx) for x ≤ 0 

(31) 
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Here γmP = k0√(εrP' - εrm') and γdP = k0√(εrP' - εrd') and εrP' is the relative dielectric constant 

of the mode. The eigenvalue equation can be found by matching tangential electric fields, 

as:  

 

γmP/γdP + εrm'/εrd = 0 

(32) 

Solving and re-arranging, εrP' can be found analytically as: 

 

εrP' = εrm'εrd/(εrd + εrm') 

(33) 

The propagation constant is βP = k0√(εrP'). In fact, εrP' will only be positive if εrm' < -εrd, so 

cutoff will occur here at ωp/√2. 

 

The slab supports two modes, with symmetric and anti-symmetric magnetic fields. For 

the mode with symmetric Hy (the long-range plasmon or ω+ mode), the variations are: 

 

Hy = H0exp{γdS(x + h/2)} for x ≤ -h/2 

Hy = H0cosh(γmSx)/cosh(γmSh/2) for ⎪x⎪ ≤ h/2 

Hy = H0exp{-γdS(x - h/2)} for x ≥ h/2 

(34) 

Here γmS = k0√(εrS' - εrm') and γdS = k0√(εrS' - εrd') and εrS' is the relative dielectric constant 

of the mode. The eigenvalue equation is: 
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(γmS/γdS)tanh(γmSh/2) + εrm'/εrd = 0 

(35) 

Similarly, for the mode with anti-symmetric Hy (the ω- mode), the variations are: 

 

Hy = -H0exp{γdA(x + h/2)} for x ≤ -h/2 

Hy = H0sinh(γmAx)/sinh(γmAh/2) for ⎪x⎪ ≤ h/2 

Hy = H0exp{-γdA(x - h/2)} for x ≥ h/2 

(36) 

Here γmA = k0√(εrA' - εrm'), γdA = k0√(εrA' - εrd') and εrA' is the relative modal dielectric 

constant. The eigenvalue equation is: 

 

  (γmA/γdA)coth(γmAh/2) + εrm'/εrd = 0 

(37) 

The eigenvalue equations must be solved numerically for εrS' and εrA'. Once this has been 

done, the propagation constants βS = k0√(εrS') and βA = k0√(εrA') may be found. 

 

Depending on the thickness of the dielectric layer and the polarization, the slot structure 

can support a more extensive spectrum of guided modes. Here we focus on the two 

plasmonic modes with symmetric and anti-symmetric Hy, whose fields and dispersion 

equations can be found by exchanging the metal and dielectric terms in Equations 34-37. 

Once again, the dispersion equation can be solved numerically. 

 

Perturbation expressions for loss 
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Calculation of the modal loss simply requires evaluation of (12). For general guides, a 

numerical calculation can be carried out using the matrix expressions. However, since the 

guided modes considered here are available analytically, direct integration may be used. 

For the single interface and the slab, we obtain: 

 

εrP'' = εrm'' {(2εr P' - εrm')/εrm'2}/(1/εrm' - εrm'/εrd
2) 

εrS'' = εrm'' {fS1εrS'/γmεrm'2  + fS2(εrS'- εrm')/γmεrm'2 }/(1/γdSεrd + fS1/γmεrm') 

εrA'' = εrm'' {fA1εr A'/γmεrm'2  + fA2(εrA'- εrm')/γmεrm'2 }/(1/γdAεrd + fA1/γmεrm') 

(38) 

Here: 

 

fS1 = {tmS  + (γmSh/2)(1 - tmS
2)} and fS2 = {tmS  - (γmSh/2)(1 - tmS

2)}  

fA1 = {cmA  + (γmAh/2)(1 - cmA
2)} and fA2 = {cmA - (γmAh/2)(1 - cmA

2)} 

 (39) 

where tmS = tanh(γmSh/2) and cmA = coth(γmAh/2). Similarly, for the slot, we get: 

 

εrS'' = εrm'' {εrS'/γmεrm'2  + (εrS'- εrm')/γmεrm'2 }/(1/γmεrm' + fS/γdSεrd) 

εrA'' = εrm'' {εrA'/γmεrm'2  + (εrA'- εrm')/γmεrm'2 }/(1/γmεrm' + fA/γdAεrd) 

(40) 

 Here: 

 

fS = {tdS  + (γdSh/2)(1 - tdS
2)} 
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fA = {cdA  + (γdAh/2)(1 - cdA
2)} 

(41) 

where tdS = tanh(γdSh/2) and cdA = coth(γdAh/2). Finally we note that some modes can 

become backward waves. In this case, power flow is reversed; the simplest method of 

including this eventuality is to work with absolute values of εrµ''. 

 

Numerical results - modal fields and dispersion 

 

We first briefly demonstrate that the matrix method generates realistic results. For 

simplicity, we consider only the single-interface guide, at the particular frequency for 

which εrm = -10. Figure 5a shows the variation of ⎪Hy⎪ for the guided mode and some 

low-order radiation modes of the lossless structure. The modes are normalised so that 

vν*Tεr
-1vν = ±1, so that modes concentrated in the metal (which has a large value of ⎪εr⎪) 

appear large.  

 

The field of the plasmon falls off exponentially on either side of the interface. Since the 

calculation window has been chosen so that the field has decayed sufficiently at the edges 

of the calculation window, the results are indistinguishable from analytic theory. The 

radiation modes are standing waves, with zeros forced by the perfect magnetic conductor 

(PMC) boundaries. Modes with εrν just less than εrd have their energy predominantly in 

the dielectric, while modes with εrν just below εrm are concentrated in the metal. These 

results are also indistinguishable from analytic theory, assuming the presence of PMC 

boundaries. 
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Figure 5b compares the predictions of the matrix method (points) and analytic theory 

(full line) for the plasmon dispersion characteristic. Detailed investigations show 

departures from full agreement at low frequency (when the characteristic approaches the 

light line) if the calculation window is too small, and at high frequency (when the 

characteristic tends to ω = ωp/√2) if the size of the matrix is too small. However, with a 

suitable matrix, the two agree well over the whole frequency range. We have investigated 

other cases involving TE and TM modes; the matrix method generally gives good results. 

 

Numerical results - noise 

 

We now use the matrix method to demonstrate the excitation of radiation by noise 

sources. Figure 6 shows the variation of ⎪Hy⎪ for the field generated in the lossy structure 

by the two noise sources at the point (0, 0), just at the edge of the metal. Figure 6a shows 

the results obtained with a standard matrix A. Here, power coupled into radiation in the 

dielectric is reflected from the edge of the calculation window to create a confusing 

standing wave pattern. Figure 6b shows the results when the matrix elements are 

modified to provide a 10-layer broadband absorber at either edge of the window. 

Absorbing boundaries clearly eliminate most of the boundary reflection, and it is now 

clear that the effect of the excitation is mainly to launch the plasmon itself, together with 

a lobe of radiation in the dielectric. Radiation into the metal is quickly damped, because 

radiation modes concentrated here have negative relative dielectric constants even in the 

lossless case. 
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Numerical results - waveguide performance 

 

We now compare the performance of the three different plasmonic guides. Figure 7a 

compares the dispersion characteristics for plasmons on single interfaces, slabs and slots. 

Two sets of data are shown, for h = 200 nm (LH) and h = 20 nm (RH). When h is large, 

all modes are forward waves and their dispersion characteristics are similar for most of 

the frequency range (except the slot plasmon with anti-symmetric Hy, whose dispersion 

characteristic is band-pass rather than low-pass). This behaviour can be understood by 

comparing the three dispersion equations; when γmh/2 is large, tanh(γmh/2) and 

coth(γmh/2) tend to unity, and the equations tend together. However, the equation for slot 

guides has γdh/2 instead of γmh/2, so there is a difference at low frequency. When h is 

small, there are much larger differences. The dispersion characteristics of the slab and 

slot modes with symmetric and anti-symmetric Hy are split about that of the single-

interface plasmon, and the anti-symmetric slab and symmetric slot modes are backward 

for some or all of the frequency range. 

 

Figure 7b shows the frequency variations of εrµ'' over the same range. When h is large, the 

modes again have similar attenuation. This behaviour can again be understood by 

considering the values of fS1, fS2, fA1 and fA2 in (39) and fS and fA in (41). All tend to unity 

when tanh(γmh/2) tends to unity, so that the perturbation expressions for loss tend 

together. However, when h is small, there are again differences. The slot modes typically 

have high loss, and are therefore of less interest. However, the attenuation characteristics 
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of the slab modes are split about that of the single-interface plasmon, and the slab mode 

with symmetric Hy has low value of εrµ'' over a wide spectral range. Common 

explanations are the extension of the evanescent field into the dielectric and the presence 

of a zero in the dominant electric field component (which is antisymmetric) in the metal. 

 

Figure 7c shows the frequency variation of the noise figure, calculated assuming a 10 µm 

long guide sub-divided into 200 sections. Even over this short distance, the noise figures 

of most modes are greater than 10 dB over much of the available bandwidth, for both 

values of h, and the asymmetric mode of the slot waveguide is entirely out of scale for h 

= 20 nm. Any such modes might be considered unusable for practical on-chip 

communication. However, when h is small, the slab mode with symmetric Hy has a noise 

figure of only a few dB up until ω/ωp = 0.5, as might be expected from its loss variation. 

This mode therefore offers the best loss and noise performance.
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8. Conclusions 

 

Using a discrete form of Rytov’s theory for thermally generated radiation, we have 

proved that the noise properties of all two-dimensional guides based on distributions of 

isotropic dielectric can be determined from their modal effective medium properties. The 

noise sources distributed over the cross-section of a lossy waveguide scatter exactly the 

correct amount of power into each mode to make this equivalence possible. It is likely 

that similar proofs may be obtained using continuous theory, and for three-dimensional 

guides. 

 

We have also presented a simple transmission line model that allows direct calculation of 

emission. All that is required are the real and imaginary parts of the modal dielectric 

constant. The former can be found by solving the lossless eigenvalue equation, and the 

latter may then be estimated using perturbation theory. This model allows the noise 

performance of different guides to be compared, and is especially relevant to plasmonics 

(where collision damping causes high loss). Not unnaturally, the best noise performance 

is obtained from the plasmonic guide with the lowest propagation loss. The model 

effectively assumes perfect source-waveguide and waveguide-load coupling, and hence 

estimates the best possible performance. However, more complicated models could be 

developed to include coupling into and out of multiple modes. To describe excitation, 

these would require a lossless splitting network between the source and a set of parallel 

transmission lines, one for each mode being considered. To describe detection, a similar 

lossless splitting network would be needed between the transmission lines and the load.  
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It is likely that equivalent circuit models may also be developed for non-thermal sources, 

and also for waveguides with distributed amplification. An important question then will 

be the relative magnitudes of amplified spontaneous emission from the gain medium and 

amplified thermal noise from the metal. Finally, we note that the method is simple 

enough to incorporate into general simulation tools that use circuit-based or discrete 

approximations. 
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Figure 1. Graded 2D waveguide in a) continuous and b) transmission-line models. 
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Figure 2. 2D transmission line models for a) TE and b) TM, with noise sources. 
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Figure 3. 1D transmission line models for a) TE and b) TM modes; c) interpretation. 

 

 

 

Figure 4. Geometries for a) single-interface, b) slab and c) slot plasmonic waveguides. 
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Figure 5. a) Transverse variation of ⎪Hy⎪ for the guided mode and some low-order 

radiation modes supported at a single interface, as calculated using the matrix method; b) 

comparison between the predictions of analytic theory and the matrix method for the 

dispersion characteristics of a single-interface plasmon. 

 

 

 

Figure 6. Two-dimensional variation of ⎪Hy⎪ generated by the two noise sources at (0, 0), 

calculated a) without and b) with absorbing boundaries in the matrix A. 
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Figure 7. a) Dispersion characteristic and b) and c) frequency variation of εrµ'' and the 

noise figure for plasmons on single interfaces, slabs and slots. Two sets of data are 

shown: h = 200 nm (LH) and h = 20 nm (RH). The propagation distance is 10 µm. 


