1,017 research outputs found

    A Maximum Entropy Method of Obtaining Thermodynamic Properties from Quantum Monte Carlo Simulations

    Full text link
    We describe a novel method to obtain thermodynamic properties of quantum systems using Baysian Inference -- Maximum Entropy techniques. The method is applicable to energy values sampled at a discrete set of temperatures from Quantum Monte Carlo Simulations. The internal energy and the specific heat of the system are easily obtained as are errorbars on these quantities. The entropy and the free energy are also obtainable. No assumptions as to the specific functional form of the energy are made. The use of a priori information, such as a sum rule on the entropy, is built into the method. As a non-trivial example of the method, we obtain the specific heat of the three-dimensional Periodic Anderson Model.Comment: 8 pages, 3 figure

    Informative Group Testing for Multiplex Assays

    Get PDF
    Infectious disease testing frequently takes advantage of two tools–group testing and multiplex assays–to make testing timely and cost effective. Until the work of Tebbs et al. (2013) and Hou et al. (2017), there was no research available to understand how best to apply these tools simultaneously. This recent work focused on applications where each individual is considered to be identical in terms of the probability of disease. However, risk-factor information, such as past behavior and presence of symptoms, is very often available on each individual to allow one to estimate individual-specific probabilities. The purpose of our paper is to propose the first group testing algorithms for multiplex assays that take advantage of individual risk-factor information as expressed by these probabilities. We show that our methods significantly reduce the number of tests required while preserving accuracy. Throughout this paper, we focus on applying our methods with the Aptima Combo 2 Assay that is used worldwide for chlamydia and gonorrhea screening

    The Peculiar Motions of Early-Type Galaxies in Two Distant Regions -- V. The Mg-- Relation, Age and Metallicity

    Get PDF
    We have examined the Mg—σ relation for early-type galaxies in the EFAR sample and its dependence on cluster properties. A comprehensive maximum likelihood treatment of the sample selection and measurement errors gives fits to the global Mg—σ relation of Mg b′=0.131 log σ −0.131 and Mg2=0.257 log σ −0.305. The slope of these relations is 25 per cent steeper than that obtained by most other authors owing to the reduced bias of our fitting method. The intrinsic scatter in the global Mg— σ relation is estimated to be 0.016 mag in Mg b′ and 0.023 mag in Mg2. The Mg— σ relation for cD galaxies has a higher zero-point than for E and S0 galaxies, implying that cDs are older and/or more metal-rich than other early-type galaxies with the same velocity dispersion. We investigate the variation in the zero-point of the Mg— σ relation between clusters. We find that it is consistent with the number of galaxies observed per cluster and the intrinsic scatter between galaxies in the global Mg—σ relation. We find no significant correlation between the Mg—σ zero-point and the cluster velocity dispersion, X-ray luminosity or X-ray temperature over a wide range in cluster mass. These results provide constraints for models of the formation of elliptical galaxies. However, the Mg—σ relation on its own does not place strong limits on systematic errors in Fundamental Plane (FP) distance estimates resulting from stellar population differences between clusters. We compare the intrinsic scatter in the Mg—σ and Fundamental Plane relations with stellar population models in order to constrain the dispersion in ages, metallicities and M/L ratios for early-type galaxies at fixed velocity dispersion. We find that variations in age or metallicity alone cannot explain the measured intrinsic scatter in both Mg— σ and the FP. We derive the joint constraints on the dispersion in age and metallicity implied by the scatter in the Mg—σ and FP relations for a simple Gaussian model. We find upper limits on the dispersions in age and metallicity at fixed velocity dispersion of 32 per cent in δ t/t and 38 per cent in δ Z/Z if the variations in age and metallicity are uncorrelated; only strongly anticorrelated variations lead to significantly higher upper limits. The joint distribution of residuals from the Mg— σ and FP relations is only marginally consistent with a model having no correlation between age and metallicity, and is better matched by a model in which age and metallicity variations are moderately anticorrelated (δ t/t ≈ 40 per cent, δ Z/Z ≈ 50 per cent and ρ≈ −0.5), with younger galaxies being more metal-rich

    Estimating the prevalence of two or more diseases using outcomes from multiplex group testing

    Get PDF
    When screening a population for infectious diseases, pooling individual specimens (e.g., blood, swabs, urine, etc.) can provide enormous cost savings when compared to testing specimens individually. In the biostatistics literature, testing pools of specimens is commonly known as group testing or pooled testing. Although estimating a population-level prevalence with group testing data has received a large amount of attention, most of this work has focused on applications involving a single disease, such as human immunodeficiency virus. Modern methods of screening now involve testing pools and individuals for multiple diseases simultaneously through the use of multiplex assays. Hou et al. (2017, Biometrics, 73, 656–665) and Hou et al. (2020, Biostatistics, 21, 417–431) recently proposed group testing protocols for multiplex assays and derived relevant case identification characteristics, including the expected number of tests and those which quantify classification accuracy. In this article, we describe Bayesian methods to estimate population-level disease probabilities from implementing these protocols or any other multiplex group testing protocol which might be carried out in practice. Our estimation methods can be used with multiplex assays for two or more diseases while incorporating the possibility of test misclassification for each disease. We use chlamydia and gonorrhea testing data collected at the State Hygienic Laboratory at the University of Iowa to illustrate our work. We also provide an online R resource practitioners can use to implement the methods in this article

    Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures

    Full text link
    The single band Hubbard and the two band Periodic Anderson Hamiltonians have traditionally been applied to rather different physical problems - the Mott transition and itinerant magnetism, and Kondo singlet formation and scattering off localized magnetic states, respectively. In this paper, we compare the magnetic and charge correlations, and spectral functions, of the two systems. We show quantitatively that they exhibit remarkably similar behavior, including a nearly identical topology of the finite temperature phase diagrams at half-filling. We address potential implications of this for theories of the rare earth ``volume collapse'' transition.Comment: 4 pages (RevTeX) including 4 figures in 7 eps files; as to appear in Phys. Rev. Let
    • …
    corecore