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Abstract
When screening a population for infectious diseases, pooling individual speci-
mens (e.g., blood, swabs, urine, etc.) can provide enormous cost savings when
compared to testing specimens individually. In the biostatistics literature, test-
ing pools of specimens is commonly known as group testing or pooled testing.
Although estimating a population-level prevalence with group testing data has
received a large amount of attention, most of this work has focused on applica-
tions involving a single disease, such as human immunodeficiency virus.Modern
methods of screening now involve testing pools and individuals for multiple
diseases simultaneously through the use of multiplex assays. Hou et al. (2017,
Biometrics, 73, 656–665) and Hou et al. (2020, Biostatistics, 21, 417–431) recently
proposed group testing protocols for multiplex assays and derived relevant case
identification characteristics, including the expected number of tests and those
which quantify classification accuracy. In this article, we describe Bayesian
methods to estimate population-level disease probabilities from implementing
these protocols or any othermultiplex group testing protocol whichmight be car-
ried out in practice. Our estimation methods can be used with multiplex assays
for two or more diseases while incorporating the possibility of test misclassifica-
tion for each disease. We use chlamydia and gonorrhea testing data collected at
the State Hygienic Laboratory at the University of Iowa to illustrate our work.
We also provide an online R resource practitioners can use to implement the
methods in this article.
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1 INTRODUCTION

In group testing applications, individual specimens are combined into pools and tests are performed on the pools for a
binary outcome (e.g., positive/negative, etc.). Individuals fromnegative pools are diagnosed to be negative, while individu-
als frompositive pools are tested further to determinewhich ones are positive. Dorfman (1943) is creditedwith introducing
this method to test American soldiers for syphilis during World War II. In the seminal article, nonoverlapping pools of
individual specimens are formed in the first stage of testing, and positive pools are resolved by testing each individual
one by one in the second stage. When the probability of disease is small, group testing protocols that implement a larger
number of stages (Pilcher et al., 2005; Quinn et al., 2000) and/or overlapping pools (Martin et al., 2013) can further reduce
the number of tests needed to identify positive individuals. The infectious disease literature documents numerous appli-
cations of group testing, including for human immunodeficiency virus (HIV), hepatitis B, and hepatitis C (Hourfar et al.,
2008; Stramer, Notari, et al., 2013; Westreich et al., 2008), chlamydia and gonorrhea (Lindan et al., 2005), and West Nile
virus (Busch et al., 2005). More recently, group testing has played a critical role in reducing laboratory testing loads when
diagnosing individuals for SARS-CoV-2 (Abdalhamid et al., 2020; Bilder et al., 2021; Pilcher et al., 2020).
Statistical research in group testing generally falls into one of two categories: case identification and estimation. In the

case identification problem, the goal is to characterize the efficiency and accuracy of group testing protocols with the usual
objectives of minimizing the expected number of tests and/or maximizing classification accuracy (Kim et al., 2007). On
the other hand, the estimation problem involves estimating a population-level probability of disease (Huang et al., 2017;
Liu et al., 2012) or covariate-adjusted probabilities by using regression (Delaigle & Meister, 2011; McMahan et al., 2017;
Wang et al., 2014). In both problems, the performance of group testing and its ability to offer cost-effective screening and
surveillance has been documented extensively. However, most of the existing research in group testing, including those
articles referenced above, has focused on a single disease.
In this article, we consider the estimation problem in group testing when multiplex assays are used to test specimens

for multiple diseases simultaneously. Our work is largely motivated by the screening practices for Chlamydia trachoma-
tis (CT) and Neisseria gonorrhoeae (NG), the bacteria that lead to chlamydia and gonorrhea infections, respectively. For
example, the Aptima Combo 2 Assay (Hologic) and the cobas CT/NG Assay (Roche) are two multiplex assays commonly
used by laboratories to test individuals for these bacteria. Recent advances in technology have seen the development of
multiplex assays for more than two infections. For example, the BDMAXCT/GC/Trichomonas vaginalis (TV) Assay (Bec-
ton, Dickinson and Company) tests for CT, NG, and TV simultaneously, and the Allplex STI Essential Assay (Seegene)
detects CT, NG, TV, andMycoplasma genitalium (de Salazar et al., 2019). Commonly used triplex assays for HIV, hepatitis
B, and hepatitis C have been compared in Stramer, Krysztof, et al. (2013), and, more recently, multiplex assays have been
authorized by the US Food and Drug Administration for simultaneous detection of influenza and SARS-CoV-2 (Roche,
2020).
When compared to research for single diseases, estimating multiple population-level disease probabilities from group

testing data has received far less attention. The original work on this problem is attributed to Hughes-Oliver and Rosen-
berger (2000), who developedD-optimal designs for estimationwhen assays are 100% accurate. Ding and Xiong (2015) and
Li et al. (2017) proposed optimal designs to estimate probabilities for multiple independent diseases and two correlated
diseases, respectively, while allowing for testing error. A practical limitation in these articles is that the methods are based
only on outcomes from initially formed master pools; that is, subsequent testing results from resolving positive pools are
not incorporated. Another limitation is that the assay accuracy rates are assumed to be 100% for each disease or they are
assumed to be known. In some applications, reasonable estimates may be available for disease-specific sensitivities and
specificities. Amore flexible approach is to regard these population-level parameters as unknown and then estimate them
simultaneously with the disease probabilities. This is the approach we espouse in this article.
Estimation for group testingwithmultiplex assays is challenging.When incorporating testmisclassification, (a) the true

disease statuses of each specimen tested are latent and are likely correlated and (b) the available data from group testing
protocols may include multiple (possibly misclassified) testing outcomes on the same individual. Tebbs et al. (2013) and
Warasi et al. (2016) proposed frequentist and Bayesian approaches for estimation with multiplex assays, respectively, but
limited their investigation to Dorfman testing, that is, hierarchical group testing protocols which implement two stages
only. In this article, we propose a Bayesian framework to estimate population-level disease probabilities and assay accuracy
probabilities from any group testing protocol which uses multiplex assays. This includes higher-stage hierarchical and
array-based protocols recently proposed in Hou et al. (2017) andHou et al. (2020), respectively, and any other protocol that
might be used in practice. In other words, the estimation framework we present herein is invariant to how the multiplex
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outcomes are recorded. Therefore, we can compare the accuracy and precision of population-level estimates for different
group testing protocols which use multiplex assays. Until now, such a comparison has been missing in the literature.
Subsequent sections of this article are organized as follows. In Section 2, we describe notation, state assumptions, and

derive the observed data likelihood which is applicable for any group testing protocol using multiplex assays. In Section 3,
we present the specifics of our Bayesian estimation approach when assay accuracy probabilities (sensitivities and speci-
ficities) are known, including prior model specification and data augmentation steps to construct an efficient posterior
sampling algorithm. In Section 4,we then generalize our approach to allow for assay accuracy probabilities to be unknown.
In Section 5, we provide simulation evidence to assess the performance of our estimationmethods and provide a compari-
son of the estimates for different group testing protocols. In Section 6,we illustrate ourwork by usingCT/NGdata collected
at the State Hygienic Laboratory (SHL) at the University of Iowa. In Section 7, we conclude with a summary discussion
and describe future work. Additional details and simulation evidence are provided in the Supporting Information.

2 NOTATION AND PRELIMINARIES

Suppose 𝑁 individuals are to be tested for 𝐾 ≥ 2 diseases using a group testing protocol. We assume all diagnostic test
results are obtained from a multiplex assay which provides a positive/negative diagnosis for each disease each time it is
used (on specimen pools or on individual specimens). For example, the SHL at the University of Iowa uses the Aptima
Combo 2 Assay (AC2A) to detect CT and NG simultaneously (see Section 6). The current multiplex protocol at the SHL
tests specimen pools (usually of size 4) with the AC2A. Pools testing positively for either disease are then resolved by
testing each individual specimen with the same assay. Disease diagnoses are then determined from the individual tests.
To focus our ideas, the presentation in this article will assume there are𝐾 = 2 diseases (e.g., CT/NG, etc.). Generalizing

our approach to𝐾 ≥ 2 diseases is straightforward and is thus relegated to the Supporting Information. Let �̃�𝑖 = (𝑌𝑖1, 𝑌𝑖2)′
denote a vector of binary random variables which encode the true disease statuses of the 𝑖th individual, with 𝑌𝑖𝑘 = 1(0)
denoting the individual is truly positive (negative) for the 𝑘th disease, for 𝑖 = 1, 2, … ,𝑁 and 𝑘 = 1, 2. We assume the �̃�𝑖 ’s
are mutually independent with probability mass function pr(𝑌𝑖1 = 𝑦1, 𝑌𝑖2 = 𝑦2|𝐩) = 𝑝(1−𝑦1)(1−𝑦2)00

𝑝
𝑦1(1−𝑦2)
10

𝑝
(1−𝑦1)𝑦2
01

𝑝
𝑦1𝑦2
11

,
where 𝑦1, 𝑦2 ∈ {0, 1}, 𝐩 = (𝑝00, 𝑝10, 𝑝01, 𝑝11)′, and the nonnegative cell probabilities 𝑝00, 𝑝10, 𝑝01, 𝑝11 satisfy 𝑝00 + 𝑝10 +
𝑝01 + 𝑝11 = 1. Therefore, the joint distribution of the true disease status vectors for all 𝑁 individuals; that is, �̃� =
(�̃�′

1
, �̃�′

2
, … , �̃�′𝑁)

′, is given by

𝜋(�̃�|𝐩) = 𝑁∏
𝑖=1

𝑝
(1−𝑌𝑖1)(1−𝑌𝑖2)

00
𝑝
𝑌𝑖1(1−𝑌𝑖2)

10
𝑝
(1−𝑌𝑖1)𝑌𝑖2
01

𝑝
𝑌𝑖1𝑌𝑖2
11

. (1)

Note that estimating 𝐩 using Equation (1) is straightforward if individual testing is used and the multiplex assay is 100%
accurate for each disease. Otherwise, the random vector �̃� is best regarded as latent.
The observed data in group testing consist of diagnostic test results collected as part of a testing protocol. These protocols

are typically completed over 𝑆 ≥ 2 stages, where, within each stage, pooled or individual specimens are tested in response
to the results from the previous stage. For example, as noted earlier, the SHL uses an 𝑆 = 2 stage protocol where pools of
specimens are tested in the first stage and individual specimens from positive pools are tested in the second. Hou et al.
(2017) evaluated the utility of hierarchical group testing protocols using a larger number of stages, showing that 𝑆 = 3
stage protocols conferred the smallest number of tests when screening for CT/NG in four western states in the United
States (Alaska, Idaho, Oregon, and Washington). A three-stage hierarchical protocol uses an intermediate second stage
with smaller-sized subpools; for example, first-stage pools of size 9, three second-stage pools of size 3, individual testing in
the third stage. Hou et al. (2020) later proposed 𝑆 = 2 and 𝑆 = 3 stage multiplex protocols which use array testing (AT). In
these (nonhierarchical) protocols, testing results arise from pooling rows and columns of overlapping specimens arranged
in an array-like configuration.
In this article, we propose an estimation framework which is applicable for any group testing protocol using multiplex

assays. To maintain this level of generality, we need notation that helps us track pool membership. Define the index set
𝑗 ⊆ {1, 2, … ,𝑁}, 𝑗 = 1, 2, … , 𝐽, which identifies which individuals contribute to the 𝑗th pool; that is, 𝑖 ∈ 𝑗 when the 𝑖th
individual is in the 𝑗th pool. Let 𝐙𝑗 = (𝑍𝑗1, 𝑍𝑗2)′ denote a vector of binary random variables encoding the true status of
the 𝑗th pool, where 𝑍𝑗𝑘 = 𝐼(

∑
𝑖∈𝑗

𝑌𝑖𝑘 > 0), for 𝑗 = 1, 2, … , 𝐽 and 𝑘 = 1, 2. In other words, the 𝑗th pool is truly positive
(truly negative) for the 𝑘th disease if the pool contains at least one (no) positive individual(s) for disease 𝑘. Again, due to
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the effects of imperfect testing, the 𝐙𝑗 ’s are not observed. Instead, we observe 𝐙𝑗 = (𝑍𝑗1, 𝑍𝑗2)′, a vector of binary random
variables encoding the test results for the 𝑗th pool, where 𝑍𝑗𝑘 = 1(0) if the 𝑗th pool tests positively (negatively) for the
𝑘th disease.
To allow for imperfect testing, we need to relate the observed testing results in 𝐙𝑗 to the true disease statuses in 𝐙𝑗 . We

assume pr(𝑍𝑗𝑘 = 1|𝑍𝑗𝑘 = 1) = 𝑆𝑒∶𝑗𝑘 and pr(𝑍𝑗𝑘 = 0|𝑍𝑗𝑘 = 0) = 𝑆𝑝∶𝑗𝑘, for 𝑗 = 1, 2, … , 𝐽 and 𝑘 = 1, 2. That is, 𝑆𝑒∶𝑗𝑘 (𝑆𝑝∶𝑗𝑘)
is the sensitivity (specificity) of themultiplex assaywhen testing the 𝑗th pool for the 𝑘th disease.We assume these accuracy
probabilities do not depend on the number of true positive individuals in the 𝑗th pool, that is, there is no effect due to
the dilution of positive individuals. However, our notation emphasizes 𝑆𝑒∶𝑗𝑘 and 𝑆𝑝∶𝑗𝑘 can be “pool-specific,” affording
us the flexibility to allow for different multiplex assays to be used and/or to have testing accuracy of a multiplex assay be
a function of the 𝑗th pool size (see Section 4). The conditional distribution of the observed data 𝐙 = (𝐙′

1
, 𝐙′
2
, … , 𝐙′𝐽)

′ given
the individuals’ true disease statuses �̃� is

𝜋(𝐙|�̃�, 𝜹) = 𝐽∏
𝑗=1

2∏
𝑘=1

𝑆
𝑍𝑗𝑘𝑍𝑗𝑘

𝑒∶𝑗𝑘
(1 − 𝑆𝑒∶𝑗𝑘)

(1−𝑍𝑗𝑘)𝑍𝑗𝑘𝑆
(1−𝑍𝑗𝑘)(1−𝑍𝑗𝑘)

𝑝∶𝑗𝑘
(1 − 𝑆𝑝∶𝑗𝑘)

𝑍𝑗𝑘(1−𝑍𝑗𝑘), (2)

where 𝜹 is a vector that contains all assay accuracy probabilities; that is, the𝑆𝑒∶𝑗𝑘’s and 𝑆𝑝∶𝑗𝑘’s for 𝑗 = 1, 2, … , 𝐽 and𝑘 = 1, 2.
Note that the right-hand side of Equation (2) is𝜋(𝐙|𝐙1, 𝐙2, … , 𝐙𝐽, 𝜹), but this equals𝜋(𝐙|�̃�, 𝜹) because𝐙𝑗 = (𝑍𝑗1, 𝑍𝑗2)′ and
𝑍𝑗𝑘 = 𝐼(

∑
𝑖∈𝑗

𝑌𝑖𝑘 > 0) are uniquely determined when the true disease statuses �̃� are given. When writing Equation (2),
we assume that testing results in 𝐙 are conditionally independent given the true statuses in �̃� and that the values of
𝑆𝑒∶𝑗𝑘 and 𝑆𝑝∶𝑗𝑘 for one disease do not depend on the true status of the other disease (see Hou et al., 2020). Combining
Equations (1) and (2), we can express the distribution of the observed data from any group testing protocol as

𝜋(𝐙|𝐩, 𝜹) = ∑
�̃�∈{0,1}2𝑁

𝜋(�̃�|𝐩)𝜋(𝐙|�̃�, 𝜹), (3)

where {0, 1}2𝑁 denotes the collection of all possible realizations of �̃�. This distribution is obtained by marginalizing the
joint distribution of the observed testing responses and the individuals’ latent statuses, that is, by summing 𝜋(𝐙, �̃�|𝐩, 𝜹) =
𝜋(�̃�|𝐩)𝜋(𝐙|�̃�, 𝜹) over �̃�. This marginalization process requires computing the sum over the 22𝑁 possible realizations of �̃�,
which can be computationally prohibitive in practical settings. For example, the Iowa CT/NG data considered in Section 6
involves 𝑁 = 14, 450 individuals.

3 ESTIMATIONWITH KNOWNASSAY ACCURACY PROBABILITIES

To incorporate prior knowledge about the disease probabilities in 𝐩 and the assay accuracy probabilities in 𝜹 , we take a
Bayesian approach as in Warasi et al. (2016) who considered two-stage hierarchical protocols only. Our methods herein
are more general and apply to any group testing protocol with multiplex assays. In this section, we consider the simpler
setting where the assay accuracy probabilities in 𝜹 are known. This assumption is then relaxed in Section 4.

3.1 Posterior sampling

We assume a priori that 𝐩 ∼ Dirichlet(𝜶); that is, the prior distribution for 𝐩 is given by

𝜋(𝐩) = 𝐵(𝜶)𝑝
𝛼00−1

00
𝑝
𝛼10−1

10
𝑝
𝛼01−1

01
𝑝
𝛼11−1
11

,

where 𝐵(𝜶) is a normalizing constant and 𝜶 = (𝛼00, 𝛼10, 𝛼01, 𝛼11)′ is a vector of known hyperparameters. Based on
the observed data 𝐙, we then update our knowledge about 𝐩 through its posterior distribution, given by 𝜋(𝐩|𝐙, 𝜹) ∝
𝜋(𝐙|𝐩, 𝜹)𝜋(𝐩). Unfortunately, this distribution involves 𝜋(𝐙|𝐩, 𝜹) whose calculation in Equation (3) is generally infea-
sible. Therefore, to facilitate posterior estimation, we develop a Markov chain Monte Carlo sampling algorithm that can
draw realizations from 𝜋(𝐩|𝐙, 𝜹).
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At the crux of this development is a data augmentation stepwhich involves introducing individuals’ true disease statuses
as “missing data.” Define the vector �̃�𝑖 = (𝑉(00)𝑖, 𝑉(10)𝑖, 𝑉(01)𝑖, 𝑉(11)𝑖)′ so that 𝑉(00)𝑖 = 1 when �̃�′𝑖 = (0, 0), 𝑉(10)𝑖 = 1 when
�̃�′
𝑖
= (1, 0), and so on.We introduce �̃�𝑖 because it uniquely encodes the true disease status of the 𝑖th individual, andwe can

work out its full conditional distribution. Specifically, �̃�𝑖|�̃�−𝑖, 𝐩, 𝐙, 𝜹 ∼ multinomial(𝑝∗
(00)𝑖

, 𝑝∗
(10)𝑖

, 𝑝∗
(01)𝑖

, 𝑝∗
(11)𝑖

), where �̃�−𝑖
aggregates all 𝑁 true disease status vectors except �̃�𝑖 . Closed-form expressions for 𝑝∗

(00)𝑖
, 𝑝∗

(10)𝑖
, 𝑝∗

(01)𝑖
, and 𝑝∗

(11)𝑖
are given

in Appendix A in the Supporting Information. In addition, from Equation (1) and the form of the prior 𝜋(𝐩), it is easy to
verify the full conditional𝜋(𝐩|�̃�) is also Dirichlet with parameter 𝜶∗ = (𝛼∗

00
, 𝛼∗
10
, 𝛼∗
01
, 𝛼∗
11
)′, where 𝛼∗𝑢𝑣 = 𝛼𝑢𝑣 +

∑𝑁

𝑖=1
𝑉(𝑢𝑣)𝑖

and 𝑉(𝑢𝑣)𝑖 = 𝑌𝑢𝑖1(1 − 𝑌𝑖1)
1−𝑢𝑌𝑣

𝑖2
(1 − 𝑌𝑖2)

1−𝑣, for 𝑢, 𝑣 ∈ {0, 1}. These two distributions, 𝜋(�̃�𝑖|�̃�−𝑖, 𝐩, 𝐙, 𝜹) and 𝜋(𝐩|�̃�), can
be used to construct an efficient algorithm to sample from 𝜋(𝐩|𝐙, 𝜹) as we now describe.

POSTERIOR SAMPLING ALGORITHM

1. Choose 𝐩(0) = (𝑝(0)
00
, 𝑝
(0)
10
, 𝑝
(0)
01
, 𝑝
(0)
11
)′ as an initial value and simulate �̃�(0)

𝑖
= (𝑌

(0)
𝑖1
, 𝑌

(0)
𝑖2
)′, for 𝑖 = 1, 2, … ,𝑁, from the

population-level multinomial model when 𝐩 = 𝐩(0). Set 𝑔 = 1.
2. For 𝑖 = 1, 2, … ,𝑁, sample �̃�(𝑔)

𝑖
= (𝑉

(𝑔)

(00)𝑖
, 𝑉

(𝑔)

(10)𝑖
, 𝑉

(𝑔)

(01)𝑖
, 𝑉

(𝑔)

(11)𝑖
)′ from

�̃�𝑖|�̃�(𝑔)−𝑖 , 𝐩(𝑔−1), 𝐙, 𝜹 ∼ multinomial(𝑝∗
(00)𝑖

, 𝑝∗
(10)𝑖

, 𝑝∗
(01)𝑖

, 𝑝∗
(11)𝑖

),

where �̃�(𝑔)
−𝑖
= (�̃�

(𝑔)′

1
, … , �̃�

(𝑔)′

𝑖−1
, �̃�

(𝑔−1)′

𝑖+1
, … , �̃�

(𝑔−1)′

𝑁 )′ and �̃�(𝑔)
𝑖
= (𝑉

(𝑔)

(10)𝑖
+ 𝑉

(𝑔)

(11)𝑖
, 𝑉

(𝑔)

(01)𝑖
+ 𝑉

(𝑔)

(11)𝑖
)′.

3. Sample 𝐩(𝑔) from 𝐩|�̃�(𝑔) ∼ Dirichlet(𝜶∗), where �̃�(𝑔) = (�̃�(𝑔)
′

1
, �̃�

(𝑔)′

2
, … , �̃�

(𝑔)′

𝑁 )′.
4. Set 𝑔 = 𝑔 + 1 and repeat steps 2–4 while 𝑔 < 𝐺, the number of Gibbs iterates.

Two remarks are in order. First, it is worth emphasizing the multinomial cell probabilities in Step 2 are functions of the
observed data in 𝐙 (see Appendix A). This is why the posterior sampling algorithm above can be implemented with any
group testing protocol usingmultiplex assays. In otherwords, different protocolswill give rise to different types of observed
data𝐙 but the sampling procedure remains unchanged. Second, in practice, we recommend selecting the number of Gibbs
iterates 𝐺 to be large; for example, 𝐺 = 10, 000, after discarding the first thousand or so iterates for burn-in purposes (see
Sections 5 and 6 for specific illustrations). For inference, the samplemean of the𝐺 iterates can be used as an estimate of the
posteriormean of 𝐩; that is,𝐸(𝐩|𝐙, 𝜹), and credible intervals can be constructed by using the appropriate sample quantiles.
3.2 Maximum a posteriori (MAP) estimation

It is well known that group testing is most beneficial when the probability of disease is low. Otherwise, most initially
formed master pools could test positively and the motivation for pooling specimens would quickly diminish. In our mul-
tiplex setting, this means 𝑝00, the probability an individual is disease-free, may be close to unity, and the population-level
parameters 𝑝10, 𝑝01, 𝑝11, andmarginal probabilities 𝑝1+ = 𝑝10 + 𝑝11 and 𝑝+1 = 𝑝01 + 𝑝11may all be close to zero depend-
ing on the diseases under investigation. Because of these constraints on the parameter space, the marginal posterior
distributions from 𝜋(𝐩|𝐙, 𝜹)may be heavily skewed and summarizing the posterior distribution with a mean (or median)
estimate may be unwise.
In such instances, reporting a posterior mode may be more sensible. We therefore describe an approach to find the

MAP estimate; that is, the mode of 𝜋(𝐩|𝐙, 𝜹). Using the same missing data conceptualization as in Section 3.1, we use the
expectation-maximization (EM) algorithm tomaximize𝜋(𝐩|𝐙, 𝜹). This algorithm involves evaluating𝑄(𝐩, 𝐩(𝑡)), the condi-
tional expectation of the logarithm of the augmented posterior 𝜋(𝐙, �̃�|𝜹)𝜋(𝐩) = 𝜋(�̃�|𝐩)𝜋(𝐙|�̃�, 𝜹)𝜋(𝐩) given the observed
data and current parameter value 𝐩(𝑡), and then maximizing it as a function of 𝐩. One then iterates between these two
steps until convergence. This can be accomplished by using the steps described below.

MAP ESTIMATION VIA EM ALGORITHM

1. Choose 𝐩(0) = (𝑝(0)
00
, 𝑝
(0)
10
, 𝑝
(0)
01
, 𝑝
(0)
11
)′ as an initial value and simulate �̃�(0)

𝑖
= (𝑌

(0)
𝑖1
, 𝑌

(0)
𝑖2
)′, for 𝑖 = 1, 2, … ,𝑁, from the

population-level multinomial model when 𝐩 = 𝐩(0). Set 𝑡 = 0.
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6 of 14 WARASI et al.

2. (E-Step): For 𝑖 = 1, 2, … ,𝑁,
∙ sample �̃�(𝑔)

𝑖
= (𝑉

(𝑔)

(00)𝑖
, 𝑉

(𝑔)

(10)𝑖
, 𝑉

(𝑔)

(01)𝑖
, 𝑉

(𝑔)

(11)𝑖
)′, for 𝑔 = 1, 2, … , 𝐺, from

�̃�𝑖|�̃�(𝑔)−𝑖 , 𝐩(𝑡), 𝐙, 𝜹 ∼ multinomial(𝑝∗
(00)𝑖

, 𝑝∗
(10)𝑖

, 𝑝∗
(01)𝑖

, 𝑝∗
(11)𝑖

), where 𝐺 is the number of Gibbs iterates;

∙ calculate the sample mean 𝐺−1
∑𝐺

𝑔=1
(𝑉

(𝑔)

(00)𝑖
, 𝑉

(𝑔)

(10)𝑖
, 𝑉

(𝑔)

(01)𝑖
, 𝑉

(𝑔)

(11)𝑖
)′ as an estimate of the conditional expectation

𝐸[(𝑉(00)𝑖, 𝑉(10)𝑖, 𝑉(01)𝑖, 𝑉(11)𝑖)
′|𝐙, 𝜹; 𝐩(𝑡)].

3. (M-Step): Calculate 𝐩(𝑡+1) using the solution in Appendix B in the Supporting Information; that is, this maximizer
depends on 𝐸[(𝑉(00)𝑖, 𝑉(10)𝑖, 𝑉(01)𝑖, 𝑉(11)𝑖)′|𝐙, 𝜹; 𝐩(𝑡)] and exists in closed form.

4. Set 𝑡 = 𝑡 + 1, and repeat steps 2–4 until themaximum absolute difference in 𝐩(𝑡+1) − 𝐩(𝑡) is less than 𝜖, where 𝜖 is small.

We again make brief remarks. First, because Step 2 uses a Gibbs sampler to estimate the conditional expecta-
tion 𝐸[(𝑉(00)𝑖, 𝑉(10)𝑖, 𝑉(01)𝑖, 𝑉(11)𝑖)′|𝐙, 𝜹; 𝐩(𝑡)], calculating the MAP estimate of 𝐩 takes longer than simply summarizing
𝜋(𝐩|𝐙, 𝜹)with the posterior mean from Section 3.1. However, because the M-Step solution exists in closed form, this addi-
tional time required is generally not prohibitive. We again recommend using a large number of Gibbs iterates in Step 2
(e.g., 𝐺 = 10, 000, etc.) after a sufficient burn in (see Sections 5 and 6). Second, when a uniform prior distribution 𝜋(𝐩) is
used, that is, setting 𝛼00 = 𝛼10 = 𝛼01 = 𝛼11 = 1, the MAP estimate of 𝐩 coincides with the maximum likelihood estimate
(MLE) of 𝐩, a potential preference for users wanting to report frequentist-based point estimates. Finally, when the assay
accuracy probabilities in 𝜹 are unknown, our simulation results in Section 5 and Appendix D in the Supporting Informa-
tion demonstrate that MAP estimates of 𝐩 and 𝜹 can be more accurate than other posterior estimates. We now generalize
our methodology to allow for this situation.

4 ESTIMATIONWITH UNKNOWNASSAY ACCURACY PROBABILITIES

Our goal now is to estimate the population-level infection probabilities in 𝐩 and the assay accuracy probabilities in 𝜹
simultaneously.Aswedemonstrate, this can be accomplished by taking our algorithms in Section 3 and adding appropriate
steps for the conditional distribution and MAP solution of 𝜹 . Such an extension is practically useful in incorporating
the uncertainty in 𝜹 . For example, although manufacturers will typically report values of sensitivity and specificity for
multiplex assays (for each disease) in their product literature, these values are usually obtained from small pilot studies
involving specimens whose true disease statuses are known in advance. The practice of ostensibly regarding these values
as “correct” can lead to two potential problems. First, doing so ignores the sampling error incurred fromhaving to estimate
these values in small feasibility experiments. Second, the population under investigation (e.g., high-risk females in Iowa,
etc.) may differ substantially from the one which was used to validate the multiplex assay initially.
Extending the approach in McMahan et al. (2017) for single diseases, let 𝑆𝑒∶(𝑙)𝑘 and 𝑆𝑝∶(𝑙)𝑘 denote the sensitivity and

specificity of the 𝑙th assay for the 𝑘th disease, for 𝑘 = 1, 2 and 𝑙 = 1, 2, … , 𝐿, and let(𝑙) = {𝑗 ∶ the 𝑙th assay tests pool 𝑗}
denote the index set of the specimens tested by the 𝑙th assay, for 𝑗 = 1, 2, … , 𝐽. Our use of the set(𝑙) simply allows us
to reparameterize the exposition in Section 2. For example, at the SHL in Iowa, the AC2A assay is used for all specimens
tested in pools and individually. If this assay performs the same when testing pools and individuals, then 𝐿 = 1 and the
parameter vector 𝜹 = (𝑆𝑒∶(1)1, 𝑆𝑒∶(1)2, 𝑆𝑝∶(1)1, 𝑆𝑝∶(1)2)′. On the other hand, if the performance of the AC2A depends on
whether pools or individuals are tested, one could envision one set of assay accuracy probabilities for pools (𝑙 = 1) and
a separate set for individuals (𝑙 = 2). This situation would correspond to 𝐿 = 2 and the parameter vector would become
𝜹 = (𝑆𝑒∶(1)1, 𝑆𝑒∶(1)2, 𝑆𝑝∶(1)1, 𝑆𝑝∶(1)2, 𝑆𝑒∶(2)1, 𝑆𝑒∶(2)2, 𝑆𝑝∶(2)1, 𝑆𝑝∶(2)2)

′.
Under our reparameterization, the distribution of the observed data 𝐙 from any group testing protocol in Equation (3)

can be written as

𝜋(𝐙|𝐩, 𝜹) = ∑
�̃�∈{0,1}2𝑁

[
𝜋(�̃�|𝐩) 𝐿∏

𝑙=1

∏
𝑗∈(𝑙)

𝑆
𝑍𝑗𝑘𝑍𝑗𝑘

𝑒∶(𝑙)𝑘
(1 − 𝑆𝑒∶(𝑙)𝑘)

(1−𝑍𝑗𝑘)𝑍𝑗𝑘

× 𝑆
(1−𝑍𝑗𝑘)(1−𝑍𝑗𝑘)

𝑝∶(𝑙)𝑘
(1 − 𝑆𝑝∶(𝑙)𝑘)

𝑍𝑗𝑘(1−𝑍𝑗𝑘)

]
,

where now both 𝐩 and the assay accuracy probabilities in 𝜹 are regarded as unknown. To incorporate the uncertainty
in 𝜹 , we use beta prior distributions for each sensitivity and specificity parameter, that is, 𝑆𝑒∶(𝑙)𝑘 ∼ beta(𝑎𝑙𝑘, 𝑏𝑙𝑘) and
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WARASI et al. 7 of 14

𝑆𝑝∶(𝑙)𝑘 ∼ beta(𝑐𝑙𝑘, 𝑑𝑙𝑘), for 𝑘 = 1, 2 and 𝑙 = 1, 2, … , 𝐿. If all prior distributions are independently specified, then the pos-
terior distribution of 𝐩 and 𝜹 satisfies 𝜋(𝐩, 𝜹|𝐙) ∝ 𝜋(𝐙|𝐩, 𝜹)𝜋(𝐩)∏𝐿

𝑙=1
𝜋(𝑆𝑒∶(𝑙)𝑘)𝜋(𝑆𝑝∶(𝑙)𝑘), where 𝜋(𝐙|𝐩, 𝜹) is given above

and 𝜋(𝑆𝑒∶(𝑙)𝑘) and 𝜋(𝑆𝑝∶(𝑙)𝑘) denote the beta priors. As noted earlier, data from multiplex assay feasibility studies can
be used to elicit informative prior distributions for 𝑆𝑒∶(𝑙)𝑘 and 𝑆𝑝∶(𝑙)𝑘. Of course, in the absence of any prior knowledge,
uniform priors can also be used.
Both the posterior sampling and EM algorithms in Section 3 can be generalized to estimate 𝐩 and 𝜹 simulta-

neously. To sample from 𝜋(𝐩, 𝜹|𝐙), we note that 𝑆𝑒∶(𝑙)𝑘|𝐙, �̃� ∼ beta(𝑎∗
𝑙𝑘
, 𝑏∗
𝑙𝑘
) and 𝑆𝑝∶(𝑙)𝑘|𝐙, �̃� ∼ beta(𝑐∗

𝑙𝑘
, 𝑑∗
𝑙𝑘
), where

𝑎∗
𝑙𝑘
= 𝑎𝑙𝑘 +

∑
𝑗∈(𝑙)

𝑍𝑗𝑘𝑍𝑗𝑘, 𝑏∗𝑙𝑘 = 𝑏𝑙𝑘 +
∑
𝑗∈(𝑙)

(1 − 𝑍𝑗𝑘)𝑍𝑗𝑘, 𝑐∗𝑙𝑘 = 𝑐𝑙𝑘 +
∑
𝑗∈(𝑙)

(1 − 𝑍𝑗𝑘)(1 − 𝑍𝑗𝑘), and 𝑑∗
𝑙𝑘
= 𝑑𝑙𝑘 +∑

𝑗∈(𝑙)
𝑍𝑗𝑘(1 − 𝑍𝑗𝑘). Therefore, because all other conditionals remain unchanged, one can take the posterior sampling

algorithm described in Section 3.1 and insert one additional step. Similarly, to calculate the MAP estimate of 𝐩 and 𝜹 , the
EM algorithm in Section 3.2 can be easily amended. The conditional expectation of the logarithm of the augmented pos-
terior given the observed data and current parameter value, now written 𝑄(𝐩, 𝜹, 𝐩(𝑡), 𝜹(𝑡)), also has a closed-form solution
in the M-step. The complete algorithms are given in Appendix C in the Supporting Information.

5 SIMULATION EVIDENCE

We performed a comprehensive simulation study to evaluate the performance of our estimation methods. This study
included examining three hierarchical group testing protocols (H2, H3, andH4) fromHou et al. (2017) and oneAT protocol
from Hou et al. (2020). We now briefly describe these protocols.

5.1 Multiplex protocols and simulation description

Ahierarchical group testing protocol is carried out by first testing a nonoverlappingmaster pool of individual specimens. If
this pool tests negatively, then each individual in the pool is declared to be negative. If this pool tests positively, the master
pool is divided into nonoverlapping subpools of specimens. Two-stage Dorfman protocols (H2) revert to individual testing
in the second stage, while higher-stage protocols use smaller sized subpools during intermediate stages of testing before
individual testing is used in the final stage. In AT, individual specimens are arranged in a square array configuration form-
ing row and column master pools which are tested in the first stage. Individuals in positive row/column intersections are
tested in the second stage along with other individuals whose statuses are potentially unknown because of testing errors
(Hou et al., 2020). The overarching message from Hou et al. (2017, 2020) is that higher stage hierarchical protocols (H3,
H4) and AT can substantially reduce the number of tests needed when compared to H2, especially when the probability
of at least one disease 1 − 𝑝00 is small.
This prompts an obvious question.When compared to H2, how doH3, H4, and AT perform in terms of estimation? One

might hypothesize that because H3, H4, and AT generally require fewer tests, fewer observations would be available and
thus the estimation performance for these protocols would be degraded. On the other hand, it could be that H3 and H4
implement more tests “where it counts,” that is, on individuals who are more likely to be positive, and AT uses master
pools (rows and columns) that consist of overlapping individuals. In the presence of testing errors, more replicate tests on
potentially positive individuals may actually improve estimation—despite H3, H4, and AT requiring fewer tests overall.
We simulated the execution of each protocol (H2, H3, H4, and AT) using two configurations of the disease probabilities,

𝐩 = (0.95, 0.02, 0.02, 0.01)′ and (0.990, 0.004, 0.004, 0.002)′; we henceforth call these Configurations I and II, respectively.
The first configuration was chosen to represent the overall prevalence of CT/NG in higher risk populations, while the
second configuration allows for two rarer diseases, each with a marginal probability of 0.004 + 0.002 = 0.006. For each of
H2, H3, H4, and AT, Table 1 lists the specific protocol which minimizes the expected number of tests when 𝑆𝑒∶(1)𝑘 = 0.95
and 𝑆𝑝∶(1)𝑘 = 0.99, for 𝑘 = 1, 2. For example, the entry “5 ∶ 1” for H2 under Configuration I means that master pools of
size 5 reduce the number of tests as much as possible on average among all two-stage hierarchical protocols. Similarly, the
entry “9 ∶ 3 ∶ 1” for H3means that master pools of size 9 are used in the first stage, three subpools of size 3 are used in the
second stage, and individual testing is used in the third. We determine these pool sizes using the optimization methods
described in Hou et al. (2017, 2020).
For each protocol and disease probability configuration, we simulated the true disease statuses of𝑁 = 5000 individuals

and randomly assigned these individuals to appropriately sized master pools. We then simulated the testing outcomes on
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8 of 14 WARASI et al.

TABLE 1 Testing protocols in Section 5. Hierarchical protocols H2, H3, and H4 use two, three, and four stages, respectively (Hou et al.,
2017). Array testing (AT) uses square arrays (Hou et al., 2020). The protocols listed below minimize the expected number of tests per
individual specimen. “Configuration I” uses 𝐩 = (0.95, 0.02, 0.02, 0.01)′ and “Configuration II” uses 𝐩 = (0.990, 0.004, 0.004, 0.002)′.

Configuration I Configuration II
Protocol Pool sizes Protocol Pool sizes
H2 5 ∶ 1 H2 11 ∶ 1

H3 9 ∶ 3 ∶ 1 H3 25 ∶ 5 ∶ 1

H4 18 ∶ 6 ∶ 3 ∶ 1 H4 48 ∶ 12 ∶ 4 ∶ 1

AT 11 × 11 AT 29 × 29

pools and individuals (allowing for potential testing error) to produce data that would be available for estimation purposes.
This entire process was repeated 𝐵 = 500 times, providing us with 500 independent data sets for each protocol under
Configurations I and II. Note that in some cases smaller sized master pools were formed when there were remainder
individuals. For example, 555 master pools of size 9 were formed for the “9 ∶ 3 ∶ 1” H3 protocol listed in Table 1; the
remaining five individuals were tested in a master pool of size 5 and resolved using H2. This practice of using H2 for
remainder pools was applied uniformly in all cases to ensure a fair comparison among the protocols.
In all simulations, we used 𝐺 = 10, 000 Gibbs iterates after discarding the first 2000 for burn-in purposes, and we used

𝐩(0) = (0.92, 0.05, 0.02, 0.01)′ and 𝜹(0) = (0.96, 0.96, 0.98, 0.98)′ as initial values for the disease probabilities and assay accu-
racy probabilities, respectively. All posteriormeasures of variability have been calculated by thinningwith every fifthGibbs
iterate selected. For the simulations reported in this section, independent investigations on our part revealed that perturb-
ing these selections (i.e., using different starting values, using different numbers of Gibbs iterates, thinning differently)
did not have a large impact on the results.

5.2 Simulation results

Tables 2 and 3 show the estimation results for both disease probability configurationswhen the assay accuracy probabilities
in 𝜹 = (𝑆𝑒∶(1)1, 𝑆𝑒∶(1)2, 𝑆𝑝∶(1)1, 𝑆𝑝∶(1)2)′ are assumed to be unknown. Table 2 shows the results for estimating 𝐩while Table 3
presents those for estimating 𝜹 . When 𝜹 is treated to be known (Section 3), we provide a table of estimation results for 𝐩 in
Appendix D. Unless otherwise stated, we used flat priors for both 𝐩 and 𝜹 , that is, 𝐩 ∼ Dirichlet(𝟏4), 𝑆𝑒∶(1)𝑘 ∼ beta(1, 1),
and 𝑆𝑝∶(1)𝑘 ∼ beta(1, 1), for 𝑘 = 1, 2. We selected these noninformative priors for two reasons. First, these distributions
give us themost challenging case for estimation because no useful prior information is injected into themodel. Second, our
use of a flat prior for 𝐩 produces MAP estimates which should largely coincide with the MLE of 𝐩. When the Dirichlet(𝟏4)
distribution is specified a priori, MAP and MLE of 𝐩 will be identical when 𝜹 is known and should be approximately
equal otherwise.
In both Tables 2 and 3, we present the samplemean (“Est”) of the posterior mean (Mean) andMAP estimates calculated

from 𝐵 = 500 independent data sets. We also report two measures of posterior variability: “SD,” which is the sample
standard deviation of the 500 posterior estimates, and “SE,” which is the posterior standard deviation of the Gibbs iterates
retained for one data set and then averaged over the 500 data sets. To compare the four protocols (H2, H3, H4, and AT) in
terms of classification,we also recorded the average and standard deviation of the number of tests needed to classify each of
the 5000 individuals as positive/negative for each disease. These quantities are denoted in Table 2 by𝑇 and 𝑆𝑇 , respectively.
Table 2 reveals the averaged mean andMAP estimates of 𝐩 are on target for both configurations of the disease probabil-

ities across all four group testing protocols. An intriguing finding is that if one moves from Dorfman testing (H2) to one
of the more complex protocols (H3, H4, or AT), the posterior variability gets no larger and may actually decrease slightly.
This is interesting because H3, H4, and AT all require fewer tests to complete on average. For example, for Configuration
I with 𝐩 = (0.95, 0.02, 0.02, 0.01)′, moving from H2 to H3 decreases the average number of tests by approximately 14.6%
(2166.6 tests for H2; 1850.8 tests for H3), yet the posterior mean and MAP estimates for H3 are as good as or better than
those for H2. Similar observations can bemade for H4 and AT in terms of estimation performance, despite these protocols
also offering a large reduction in the number of tests needed.
Moving to the assay accuracy probabilities in Table 3, one does observe a slight degradation in performance of Dorfman

testing (H2)when attempting to estimate the sensitivity parameters 𝑆𝑒∶(1)1 and 𝑆𝑒∶(1)2 using a posteriormean, especially for
Configuration II with 𝐩 = (0.990, 0.004, 0.004, 0.002)′. This should not be surprising because with so few positive individ-
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WARASI et al. 9 of 14

TABLE 2 Simulation results for the posterior mean (Mean) and the maximum a posteriori (MAP) estimates of 𝐩 = (𝑝00, 𝑝10, 𝑝01, 𝑝11)′

when assay accuracy probabilities are unknown. Estimates (“Est”) are averages over 𝐵 = 500Monte Carlo data sets, “SD” is the sample
standard deviation of the 500 estimates, and “SE” is the estimated posterior standard deviation as described in Section 5.2. Flat priors have
been used for all parameters; that is, 𝐩 ∼ Dirichlet(𝟏4), 𝑆𝑒∶(1)𝑘 ∼ beta(1, 1), and 𝑆𝑝∶(1)𝑘 ∼ beta(1, 1), for 𝑘 = 1, 2. The mean 𝑇 and standard
deviation 𝑆𝑇 of the number of tests are also shown; the percentage reduction in 𝑇 is compared to H2 from Tebbs et al. (2013) and Warasi et al.
(2016).

H2 H3 H4 AT
Est SD SE Est SD SE Est SD SE Est SD SE

Configuration I 𝑝00 = 0.95 Mean 0.948 0.0037 0.0039 0.949 0.0033 0.0034 0.949 0.0033 0.0033 0.949 0.0034 0.0034
𝑝10 = 0.02 0.021 0.0024 0.0026 0.020 0.0023 0.0022 0.020 0.0021 0.0022 0.020 0.0022 0.0022
𝑝01 = 0.02 0.021 0.0025 0.0026 0.020 0.0023 0.0022 0.020 0.0022 0.0022 0.020 0.0023 0.0022
𝑝11 = 0.01 0.010 0.0015 0.0015 0.010 0.0014 0.0015 0.010 0.0014 0.0014 0.010 0.0014 0.0015

MAP 0.950 0.0037 0.0039 0.950 0.0033 0.0034 0.950 0.0033 0.0033 0.950 0.0033 0.0034
0.020 0.0024 0.0026 0.020 0.0023 0.0022 0.020 0.0021 0.0022 0.020 0.0022 0.0022
0.020 0.0025 0.0026 0.020 0.0022 0.0022 0.020 0.0022 0.0022 0.020 0.0022 0.0022
0.010 0.0015 0.0015 0.010 0.0014 0.0015 0.010 0.0014 0.0014 0.010 0.0014 0.0015

𝑇 2166.6 1850.8 (14.6%) 1858.3 (14.2%) 1729.1 (20.2%)
𝑆𝑇 66.8 74.7 87.8 77.1

Configuration II 𝑝00 = 0.990 Mean 0.988 0.0018 0.0020 0.989 0.0016 0.0016 0.989 0.0015 0.0016 0.989 0.0015 0.0016
𝑝10 = 0.004 0.005 0.0012 0.0013 0.004 0.0010 0.0011 0.004 0.0009 0.0010 0.004 0.0010 0.0010
𝑝01 = 0.004 0.005 0.0012 0.0013 0.004 0.0010 0.0011 0.004 0.0010 0.0010 0.004 0.0010 0.0010
𝑝11 = 0.002 0.002 0.0007 0.0007 0.002 0.0006 0.0007 0.002 0.0006 0.0007 0.002 0.0007 0.0007

MAP 0.990 0.0019 0.0020 0.990 0.0016 0.0016 0.990 0.0015 0.0016 0.990 0.0016 0.0016
0.004 0.0012 0.0013 0.004 0.0011 0.0011 0.004 0.0010 0.0010 0.004 0.0010 0.0010
0.004 0.0012 0.0013 0.004 0.0010 0.0011 0.004 0.0010 0.0010 0.004 0.0010 0.0010
0.002 0.0007 0.0007 0.002 0.0006 0.0007 0.002 0.0006 0.0007 0.002 0.0007 0.0007

𝑇 1047.6 675.2 (35.5%) 582.9 (44.4%) 755.3 (27.9%)
𝑆𝑇 78.9 64.5 63.1 90.1

uals for either disease, posterior distributions are highly skewed and thus the mean may not be an ideal choice. However,
Table 3 also shows that MAP estimation in this setting is much improved for H2, and that MAP estimation with H3, H4,
or AT appears to recover 𝑆𝑒∶(1)1 and 𝑆𝑒∶(1)2 nearly perfectly on average. In addition, when compared to H2, the poste-
rior distributions of 𝑆𝑒∶(1)1 and 𝑆𝑒∶(1)2 are less variable (smaller SD/SE) when using H3, H4, and AT under both disease
probability configurations.
Following the recommendations of an anonymous reviewer, we have performed additional simulation studies which

use a smaller sample size (𝑁 = 1000), a larger number of assays (𝐿 = 2), and we have investigated the performance of our
methods when assay accuracy probabilities in 𝜹 are substantially lower. In these more challenging settings for estimation,
the use of informative prior distributions for𝐩 and/or 𝜹 can beuseful. Another reviewer astutely noted thatwhen assays are
perfect, that is, when 𝑆𝑒∶(1)1 = 𝑆𝑒∶(1)2 = 𝑆𝑝∶(1)1 = 𝑆𝑝∶(1)2 = 1, all group testing protocols will produce the same estimates
of 𝐩 because all true individual disease statuses are recoverable. Because retesting positive pools may confer limited utility
in this setting (Chen & Swallow, 1990), this has motivated us to evaluate the use of master pool testing (MPT) as a means
to estimate 𝐩 in the presence of imperfect testing; see Tu et al. (1995) andMcMahan et al. (2017). All additional simulation
studies are summarized in Appendix D.

6 CHLAMYDIA AND GONORRHEA APPLICATION

Chlamydia and gonorrhea are two of the most common sexually transmitted diseases in the United States (Centers for
Disease Control and Prevention, 2022). Infected individuals can develop serious health-related complications, including
pelvic inflammatory disease, infertility, and ectopic pregnancy. Public health laboratories across the United States contin-
ually perform surveillance for these diseases. For example, the SHL at the University of Iowa performs thousands of tests
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TABLE 3 Simulation results for the posterior mean (Mean) and the maximum a posteriori (MAP) estimates of
𝜹 = (𝑆𝑒∶(1)1, 𝑆𝑒∶(1)2, 𝑆𝑝∶(1)1, 𝑆𝑝∶(1)2)

′. Estimates (“Est”) are averages over 𝐵 = 500Monte Carlo data sets, “SD” is the sample standard deviation
of the 500 estimates, and “SE” is the estimated posterior standard deviation as described in Section 5.2. Flat priors have been used for all
parameters; that is, 𝐩 ∼ Dirichlet(𝟏4), 𝑆𝑒∶(1)𝑘 ∼ beta(1, 1), and 𝑆𝑝∶(1)𝑘 ∼ beta(1, 1), for 𝑘 = 1, 2.

H2 H3 H4 AT
Est SD SE Est SD SE Est SD S3 Est SD SE

Configuration I 𝑆𝑒∶(1)1 = 0.95 Mean 0.938 0.024 0.027 0.947 0.015 0.015 0.948 0.011 0.012 0.948 0.014 0.015
𝑆𝑒∶(1)2 = 0.95 0.942 0.023 0.027 0.946 0.015 0.015 0.947 0.012 0.012 0.947 0.014 0.015
𝑆𝑝∶(1)1 = 0.99 0.990 0.003 0.004 0.989 0.004 0.004 0.989 0.003 0.004 0.989 0.005 0.005
𝑆𝑝∶(1)2 = 0.99 0.990 0.004 0.004 0.989 0.004 0.004 0.989 0.003 0.004 0.989 0.004 0.005

MAP 0.946 0.025 0.027 0.950 0.014 0.015 0.950 0.011 0.012 0.950 0.014 0.015
0.954 0.024 0.027 0.951 0.015 0.015 0.950 0.012 0.012 0.952 0.014 0.015
0.990 0.004 0.004 0.990 0.003 0.004 0.990 0.003 0.004 0.990 0.004 0.005
0.990 0.004 0.004 0.990 0.004 0.004 0.990 0.003 0.004 0.989 0.005 0.005

Configuration II 𝑆𝑒∶(1)1 = 0.95 Mean 0.889 0.051 0.067 0.930 0.033 0.036 0.939 0.026 0.027 0.931 0.034 0.036
𝑆𝑒∶(1)2 = 0.95 0.889 0.055 0.067 0.930 0.032 0.037 0.936 0.026 0.028 0.930 0.031 0.037
𝑆𝑝∶(1)1 = 0.99 0.990 0.004 0.005 0.989 0.004 0.005 0.988 0.005 0.006 0.988 0.005 0.005
𝑆𝑝∶(1)2 = 0.99 0.990 0.004 0.005 0.989 0.004 0.005 0.988 0.005 0.006 0.988 0.005 0.005

MAP 0.936 0.058 0.067 0.948 0.037 0.036 0.951 0.027 0.027 0.948 0.038 0.036
0.938 0.061 0.067 0.949 0.036 0.037 0.948 0.027 0.028 0.947 0.035 0.037
0.991 0.004 0.005 0.991 0.005 0.005 0.990 0.005 0.006 0.990 0.006 0.005
0.990 0.004 0.005 0.990 0.005 0.005 0.990 0.005 0.006 0.990 0.005 0.005

TABLE 4 CT/NG testing protocols in Section 6. The configurations below minimize the expected number of tests per individual. AC2A
accuracy probabilities for CT and NG are also shown.

Protocol Pool sizes Sensitivity Specificity
Urine H2 4 ∶ 1 CT 𝑆𝑒∶(1)1 = 0.947 𝑆𝑝∶(1)1 = 0.989

H3 9 ∶ 3 ∶ 1 NG 𝑆𝑒∶(1)2 = 0.913 𝑆𝑝∶(1)2 = 0.993

AT 8 × 8

Swab H2 4 ∶ 1 CT 𝑆𝑒∶(1)1 = 0.942 𝑆𝑝∶(1)1 = 0.976

H3 9 ∶ 3 ∶ 1 NG 𝑆𝑒∶(1)2 = 0.992 𝑆𝑝∶(1)2 = 0.987

AT 8 × 8

Abbreviations: AC2A, Aptima Combo 2 Assay; AT, array testing; CT, Chlamydia trachomatis; NG, Neisseria gonorrhoeae.

each year for Iowa residents using the Dorfman (H2) protocol with the AC2A. We use a data set provided to us by our
collaborators at the SHL to further investigate the estimation methods in this article.
Our data consist of the CT/NG test results for 14,450 females tested during the 2014 calendar year. Urine and cervical

swab specimens were collected from these individuals at different locations in Iowa and were transported to the SHL for
testing. Among the 14,450 females, 4402 contributed urine specimens while 10,048 contributed cervical swab specimens.
The AC2A was used to diagnose all specimens, whether in pools or individually, and Dorfman’s H2 protocol was used to
resolve all positive pools. In total, there were 2395 master pools of size 4, 12 pools of size 3, and 1 pool of size 2. All other
specimens received at the SHL were tested individually. Based on the results of all individual tests performed, individuals
were classified as positive or negative for each disease. A summary of these classification results is shown in Appendix E
in the Supporting Information.
We use the classification results to perform a feasibility study comparing the estimation results from H2 to those from

other group testing protocols. To do this, we treat the final disease classifications in the Iowa data as true statuses, assign
individuals to initial master pools, and simulate the test responses for H2, H3, and AT, as described in Section 5. We do not
use theH4 protocol in this illustration because themarginal disease probabilities of CT andNG are too large for the sample
of individuals we have. The specific configurations of H2, H3, and AT are shown in Table 4, which were determined the
same way as in Section 5, that is, by minimizing the expected number of tests per individual specimen. For verisimilitude,
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WARASI et al. 11 of 14

TABLE 5 CT/NG pooling feasibility study. Posterior estimates of 𝐩 = (𝑝00, 𝑝10, 𝑝01, 𝑝11)′ when assay accuracy probabilities are unknown.
Estimates (“Est”) are averages over 𝐵 = 500Monte Carlo data sets, and “SE” is the estimated posterior standard deviation as described in
Section 5.2. Flat priors have been used for all parameters; that is, 𝐩 ∼ Dirichlet(𝟏4), 𝑆𝑒∶(1)𝑘 ∼ beta(1, 1), and 𝑆𝑝∶(1)𝑘 ∼ beta(1, 1), for 𝑘 = 1, 2.
The mean 𝑇 and standard deviation 𝑆𝑇 of the number of tests are also shown; the percentage reduction in 𝑇 is compared to H2 from Tebbs
et al. (2013) and Warasi et al. (2016).

H2 H3 AT
Stratum CT NG Est SE Est SE Est SE
Urine Mean − − 𝑝00 = 0.907 0.0065 𝑝00 = 0.907 0.0055 𝑝00 = 0.909 0.0054
𝑁 = 4402 + − 𝑝10 = 0.081 0.0062 𝑝10 = 0.081 0.0053 𝑝10 = 0.080 0.0051

− + 𝑝01 = 0.007 0.0018 𝑝01 = 0.006 0.0013 𝑝01 = 0.006 0.0013
+ + 𝑝11 = 0.005 0.0013 𝑝11 = 0.005 0.0012 𝑝11 = 0.005 0.0011

MAP − − 𝑝00 = 0.908 0.0065 𝑝00 = 0.908 0.0055 𝑝00 = 0.908 0.0054
+ − 𝑝10 = 0.081 0.0062 𝑝10 = 0.081 0.0053 𝑝10 = 0.081 0.0051
− + 𝑝01 = 0.006 0.0018 𝑝01 = 0.006 0.0013 𝑝01 = 0.006 0.0013
+ + 𝑝11 = 0.005 0.0013 𝑝11 = 0.005 0.0012 𝑝11 = 0.005 0.0011

𝑇 2489.6 2332.9 (6.3%) 2333.3 (6.3%)
𝑆𝑇 23.7 25.4 26.3

Swab Mean − − 𝑝00 = 0.907 0.0052 𝑝00 = 0.908 0.0039 𝑝00 = 0.908 0.0038
𝑁 = 10048 + − 𝑝10 = 0.081 0.0051 𝑝10 = 0.081 0.0038 𝑝10 = 0.081 0.0037

− + 𝑝01 = 0.006 0.0011 𝑝01 = 0.006 0.0008 𝑝01 = 0.006 0.0008
+ + 𝑝11 = 0.005 0.0009 𝑝11 = 0.005 0.0007 𝑝11 = 0.005 0.0007

MAP − − 𝑝00 = 0.908 0.0052 𝑝00 = 0.909 0.0039 𝑝00 = 0.909 0.0038
+ − 𝑝10 = 0.081 0.0051 𝑝10 = 0.081 0.0038 𝑝10 = 0.081 0.0037
− + 𝑝01 = 0.005 0.0011 𝑝01 = 0.005 0.0008 𝑝01 = 0.005 0.0008
+ + 𝑝11 = 0.005 0.0009 𝑝11 = 0.005 0.0007 𝑝11 = 0.005 0.0007

𝑇 5802.8 5400.0 (6.9%) 5354.7 (7.7%)
𝑆𝑇 46.4 47.9 53.8

Abbreviations: CT, Chlamydia trachomatis; MAP, maximum a posteriori; NG, Neisseria gonorrhoeae.

we used values of 𝑆𝑒∶(1)1 and 𝑆𝑝∶(1)1 reported in theAC2Apackage insert for CT and similarly 𝑆𝑒∶(1)2 and 𝑆𝑝∶(1)2 for NG (see
www.hologic.com). These values were used only to determine the protocols in Table 4 and to simulate all test responses
in our feasibility study. To average over the effect of Monte Carlo simulation error, we created 𝐵 = 500 sets of master pools
for each protocol with the configurations in Table 4. Within each specimen type (urine/swab), random assignment of
individuals to pools was used throughout.
For each set of master pools, we used simulation to create test outcomes one would observe had H2, H3, and

AT been implemented at the Iowa SHL, and we calculated the posterior mean and MAP estimates of 𝐩 and 𝜹 =
(𝑆𝑒∶(1)1, 𝑆𝑒∶(1)2, 𝑆𝑝∶(1)1, 𝑆𝑝∶(1)2)

′ under the assumption 𝜹 is unknown. The disease probabilities in 𝐩 in this application
are

𝑝00 = proportion of individuals negative for both CT and NG

𝑝10 = proportion of individuals positive for CT but negative for NG

𝑝01 = proportion of individuals negative for CT but positive for NG

𝑝11 = proportion of individuals positive for both CT and NG.

As in Section 5,we used flat priors for all parameters, that is,𝐩 ∼ Dirichlet(𝟏4), 𝑆𝑒∶(1)𝑘 ∼ beta(1, 1), and 𝑆𝑝∶(1)𝑘 ∼ beta(1, 1),
for 𝑘 = 1, 2. We also continued to use the same starting values 𝐩(0) and 𝜹(0) as in Section 5 and the same selections for the
number of Gibbs iterates and thinning. Trace plots were used to monitor convergence and to check posterior mixing. For
one data set (out of 500) in the urine stratum, which includes the results for H2, H3, and AT, the simulation took 70 (271)
s to determine the posterior mean estimates (MAP estimates). These same times for the larger swab stratum were 167 and
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TABLE 6 CT/NG pooling feasibility study. Posterior estimates of 𝜹 = (𝑆𝑒∶(1)1, 𝑆𝑒∶(1)2, 𝑆𝑝∶(1)1, 𝑆𝑝∶(1)2)′. Estimates (“Est”) are averages over
𝐵 = 500Monte Carlo data sets, and “SE” is the estimated posterior standard deviation as described in Section 5.2. Flat priors have been used
for all parameters; that is, 𝐩 ∼ Dirichlet(𝟏4), 𝑆𝑒∶(1)𝑘 ∼ beta(1, 1), and 𝑆𝑝∶(1)𝑘 ∼ beta(1, 1), for 𝑘 = 1, 2.

H2 H3 AT
Stratum Accuracy Est SE Est SE Est SE
Urine 𝑆𝑒∶(1)1 = 0.947 Mean 𝑆𝑒∶(1)1 = 0.948 0.022 𝑆𝑒∶(1)1 = 0.946 0.012 𝑆𝑒∶(1)1 = 0.948 0.011
𝑁 = 4402 𝑆𝑒∶(1)2 = 0.913 𝑆𝑒∶(1)2 = 0.875 0.066 𝑆𝑒∶(1)2 = 0.899 0.034 𝑆𝑒∶(1)2 = 0.904 0.032

𝑆𝑝∶(1)1 = 0.989 𝑆𝑝∶(1)1 = 0.987 0.007 𝑆𝑝∶(1)1 = 0.987 0.006 𝑆𝑝∶(1)1 = 0.985 0.008
𝑆𝑝∶(1)2 = 0.993 𝑆𝑝∶(1)2 = 0.993 0.002 𝑆𝑝∶(1)2 = 0.993 0.002 𝑆𝑝∶(1)2 = 0.993 0.002

MAP 𝑆𝑒∶(1)1 = 0.948 0.022 𝑆𝑒∶(1)1 = 0.947 0.012 𝑆𝑒∶(1)1 = 0.948 0.011
𝑆𝑒∶(1)2 = 0.911 0.066 𝑆𝑒∶(1)2 = 0.911 0.034 𝑆𝑒∶(1)2 = 0.914 0.032
𝑆𝑝∶(1)1 = 0.989 0.007 𝑆𝑝∶(1)1 = 0.989 0.006 𝑆𝑝∶(1)1 = 0.989 0.008
𝑆𝑝∶(1)2 = 0.993 0.003 𝑆𝑝∶(1)2 = 0.993 0.002 𝑆𝑝∶(1)2 = 0.993 0.002

Swab 𝑆𝑒∶(1)1 = 0.942 Mean 𝑆𝑒∶(1)1 = 0.940 0.019 𝑆𝑒∶(1)1 = 0.941 0.009 𝑆𝑒∶(1)1 = 0.941 0.008
𝑁 = 10048 𝑆𝑒∶(1)2 = 0.992 𝑆𝑒∶(1)2 = 0.936 0.040 𝑆𝑒∶(1)2 = 0.985 0.009 𝑆𝑒∶(1)2 = 0.986 0.009

𝑆𝑝∶(1)1 = 0.976 𝑆𝑝∶(1)1 = 0.976 0.006 𝑆𝑝∶(1)1 = 0.976 0.005 𝑆𝑝∶(1)1 = 0.975 0.007
𝑆𝑝∶(1)2 = 0.987 𝑆𝑝∶(1)2 = 0.988 0.002 𝑆𝑝∶(1)2 = 0.987 0.002 𝑆𝑝∶(1)2 = 0.987 0.002

MAP 𝑆𝑒∶(1)1 = 0.942 0.019 𝑆𝑒∶(1)1 = 0.942 0.009 𝑆𝑒∶(1)1 = 0.942 0.008
𝑆𝑒∶(1)2 = 0.984 0.040 𝑆𝑒∶(1)2 = 0.991 0.009 𝑆𝑒∶(1)2 = 0.991 0.009
𝑆𝑝∶(1)1 = 0.976 0.006 𝑆𝑝∶(1)1 = 0.976 0.005 𝑆𝑝∶(1)1 = 0.976 0.007
𝑆𝑝∶(1)2 = 0.987 0.002 𝑆𝑝∶(1)2 = 0.987 0.002 𝑆𝑝∶(1)2 = 0.987 0.002

Abbreviations: CT, Chlamydia trachomatis; MAP, maximum a posteriori; NG, Neisseria gonorrhoeae.

330 s, respectively. The study was performed on a computer that has an Intel Core i7-10750H CPU@ 2.60 GHz and 32 GB
of RAM.
The posteriormean andMAP estimate summaries for 𝐩 and 𝜹 are shown in Tables 5 and 6, respectively. The “Est” values

shown in the tables are averages over 500 data sets, and we continue to use “SE” as an estimate of the posterior standard
deviation. We did not report sample standard deviations of the 500 posterior estimates in this study because, unlike those
in Section 5, all Monte Carlo data sets have been constructed from one set of CT/NG diagnoses.
The first observation in Table 5 is that, for either specimen type, disease probability estimates are similar across the three

protocols (H2,H3, andAT) for both the posteriormean andmode (MAP). In addition, posterior variability is reducedwhen
moving from H2 to either H3 or AT. For example, when compared to H2, both H3 and AT confer a 6.3% reduction in the
average number of tests needed to classify all urine specimens for CT and NG, yet all posterior estimates are slightly more
precise. Similar reductions and improvements are seen for the swab specimens.Moving to the assay accuracy probabilities
in Table 6, one observes the same phenomenon for 𝑆𝑒∶(1)1 and 𝑆𝑒∶(1)2, that is, moving from H2 to either H3 or AT reduces
the posterior variability by roughly 50% for both specimen types. The benefits of using H3 and AT are well known in the
case identification literature (see, e.g., Kim et al., 2007) because both protocols provide improved classification efficiency.
What our study adds is that the Iowa SHL could switch to these more efficient protocols and not lose anything in terms
of estimation accuracy or precision.

7 DISCUSSION

We have developed estimation techniques for group testing data with two or more diseases, thereby generalizing the
approaches inWarasi et al. (2016) and Tebbs et al. (2013) to accommodate data from any group testing protocol which uses
multiplex assays. When compared to Dorfman testing through H2, our simulation studies demonstrate that estimation
performance is not compromised when using higher stage hierarchical or AT protocols, despite the fact these protocols
often require fewer tests. We provide R functions in Appendix F in the Supporting Information which describe posterior
sampling and enable the practitioner to implement the methods presented in this article. Code with documentation and
examples is also available at the first author’s GitHub page https://github.com/mswarasi/General-MultiplexBayes.
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We conclude with three remarks, all of which present avenues for future work. First, it is always of interest to think
about optimal designs in group testing—not only for case identification but also for estimation. We have used protocols
in Sections 5 and 6 on the basis of the former because these designs represent those which laboratories can implement to
provide diagnoses to all individuals in themost efficientway possible. At the same time, onemight also select those designs
which provide the best estimation performance. As noted in Section 1, this has been investigated on frequentist grounds
when resolving positive pools is not performed. More recently, Warasi et al. (2022) have extended this work to Dorfman
testing (H2) when detecting multiple diseases in animal populations. Second, instead of specifying multiple sets of prior
distributions for differently sized pools, perhaps to fend off fears of dilution (Warasi et al., 2017), it should be possible to
elicit a secondary model which describes how pools might experience the dilution of positive specimens. Modeling assay
sensitivities directly, for each disease separately or jointly, could provide a way to relax assumptions in Section 2, and
it may provide a more parsimonious approach to estimation. Modifications of our EM algorithm to determine posterior
maximizers, such as variational EM approaches, could be useful in the event of increased computational complexity.
Finally, an anonymous reviewer has remarked that including covariates which are predictive of disease (e.g., number
of sexual partners, race/ethnicity, etc.) may sharpen probability estimates on an individual level. A number of authors
have looked at the regression analysis of group testing data for a single disease (see Section 1). Generalizing this work to
accommodate outcomes from multiplex group testing is an excellent topic for future research.
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