11,208 research outputs found

    Jet trails and Mach cones: The interaction of microquasars with the ISM

    Full text link
    A sub-set of microquasars exhibit high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the ISM must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long term dynamical evolution and the observational properties of these microquasar bow shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H{\alpha} emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of X-ray binary SAX J1712.6-3739.Comment: 33 pages, 13 figures, 1 table; Accepted to Ap

    Four-Point Spectral Functions and Ward Identities in Hot QED

    Get PDF
    We derive spectral representations for the different components of the 4-point function at finite temperature in the real time formalism in terms of five real spectral densities. We explicitly calculate all these functions in QED in the hard thermal loop approximation. The Ward identities obeyed by the 1-loop 3- and 4-point functions in real time and their spectral functions are derived. We compare our results with those derived previously in the imaginary-time formalism for retarded functions in hot QCD, and we discuss the generalization of our results to non-equilibrium situations.Comment: 16 pages in Revtex with 3 figures, dense version, a typo correcte

    Description of properties of binary solvent mixtures

    Get PDF

    Inverse Reinforcement Learning in Swarm Systems

    Full text link
    Inverse reinforcement learning (IRL) has become a useful tool for learning behavioral models from demonstration data. However, IRL remains mostly unexplored for multi-agent systems. In this paper, we show how the principle of IRL can be extended to homogeneous large-scale problems, inspired by the collective swarming behavior of natural systems. In particular, we make the following contributions to the field: 1) We introduce the swarMDP framework, a sub-class of decentralized partially observable Markov decision processes endowed with a swarm characterization. 2) Exploiting the inherent homogeneity of this framework, we reduce the resulting multi-agent IRL problem to a single-agent one by proving that the agent-specific value functions in this model coincide. 3) To solve the corresponding control problem, we propose a novel heterogeneous learning scheme that is particularly tailored to the swarm setting. Results on two example systems demonstrate that our framework is able to produce meaningful local reward models from which we can replicate the observed global system dynamics.Comment: 9 pages, 8 figures; ### Version 2 ### version accepted at AAMAS 201

    Parametric Feedback Resonance in Chaotic Systems

    Get PDF
    If one changes the control parameter of a chaotic system proportionally to the distance between an arbitrary point on the strange attractor and the actual trajectory, the lifetime Ď„ of the most stable unstable periodic orbit in the vicinity of this point starts to diverge with a power law. The volume in parameter space where Ď„ becomes infinite is finite and from its nonfractal boundaries one can determine directly the local Liapunov exponents. The experimental applicability of the method is demonstrated for two coupled diode resonators

    Final state interactions in two-particle interferometry

    Full text link
    We reconsider the influence of two-particle final state interactions (FSI) on two-particle Bose-Einstein interferometry. We concentrate in particular on the problem of particle emission at different times. Assuming chaoticity of the source, we derive a new general expression for the symmetrized two-particle cross section. We discuss the approximations needed to derive from the general result the Koonin-Pratt formula. Introducing a less stringent version of the so-called smoothness approximation we also derive a more accurate formula. It can be implemented into classical event generators and allows to calculate FSI corrected two-particle correlation functions via modified Bose-Einstein "weights".Comment: 12 pages RevTeX, 2 ps-figures included, submitted to Phys. Rev.

    Flow effects on the freeze-out phase-space density in heavy ion collisions

    Get PDF
    The strong longitudinal expansion of the reaction zone formed in relativistic heavy-ion collisions is found to significantly reduce the spatially averaged pion phase-space density, compared to naive estimates based on thermal distributions. This has important implications for data interpretation and leads to larger values for the extracted pion chemical potential at kinetic freeze-out.Comment: 5 pages, 3 figures included via epsfig, added discussion of different transverse density profiles, 1 new figur

    Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions

    Get PDF
    We perform viscous hydrodynamic calculations in 2+1 dimensions to investigate the influence of bulk viscosity on the viscous suppression of elliptic flow in non-central heavy-ion collisions at RHIC energies. Bulk and shear viscous effects on the evolution of radial and elliptic flow are studied with different model assumptions for the transport coefficients. We find that the temperature dependence of the relaxation time for the bulk viscous pressure, especially its critical slowing down near the quark-hadron phase transition at T_c, partially offsets effects from the strong growth of the bulk viscosity itself near T_c, and that even small values of the specific shear viscosity eta/s of the fireball matter can be extracted without large uncertainties from poorly controlled bulk viscous effects.Comment: 13 pages, 7 figures, 1 table. Submitted to Physical Review C. v2: corrected typos in several entries in Table
    • …
    corecore