1,338 research outputs found
Foot-operated cell-counter
Cell-counter for cell indices consists of a footboard with four pressure sensitive switches and an enclosure for the components and circuitry. This device increases the operators efficiency by reducing the number of required hand movements
Liquidity and the multiscaling properties of the volume traded on the stock market
We investigate the correlation properties of transaction data from the New
York Stock Exchange. The trading activity f(t) of each stock displays a
crossover from weaker to stronger correlations at time scales 60-390 minutes.
In both regimes, the Hurst exponent H depends logarithmically on the liquidity
of the stock, measured by the mean traded value per minute. All multiscaling
exponents tau(q) display a similar liquidity dependence, which clearly
indicates the lack of a universal form assumed by other studies. The origin of
this behavior is both the long memory in the frequency and the size of
consecutive transactions.Comment: 7 pages, 3 figures, submitted to Europhysics Letter
Edwards-Wilkinson surface over a spherical substrate: noise in the height fluctuations
We study the steady state fluctuations of an Edwards-Wilkinson type surface
with the substrate taken to be a sphere. We show that the height fluctuations
on circles at a given latitude has the effective action of a perfect Gaussian
noise, just as in the case of fixed radius circles on an infinite planar
substrate. The effective surface tension, which is the overall coefficient of
the action, does not depend on the latitude angle of the circles.Comment: 6 page
Stochastic exclusion processes versus coherent transport
Stochastic exclusion processes play an integral role in the physics of
non-equilibrium statistical mechanics. These models are Markovian processes,
described by a classical master equation. In this paper a quantum mechanical
version of a stochastic hopping process in one dimension is formulated in terms
of a quantum master equation. This allows the investigation of coherent and
stochastic evolution in the same formal framework. The focus lies on the
non-equilibrium steady state. Two stochastic model systems are considered, the
totally asymmetric exclusion process and the fully symmetric exclusion process.
The steady state transport properties of these models is compared to the case
with additional coherent evolution, generated by the -Hamiltonian
Crossover between ballistic and diffusive transport: The Quantum Exclusion Process
We study the evolution of a system of free fermions in one dimension under
the simultaneous effects of coherent tunneling and stochastic Markovian noise.
We identify a class of noise terms where a hierarchy of decoupled equations for
the correlation functions emerges. In the special case of incoherent,
nearest-neighbour hopping the equation for the two-point functions is solved
explicitly. The Green's function for the particle density is obtained
analytically and a timescale is identified where a crossover from ballistic to
diffusive behaviour takes place. The result can be interpreted as a competition
between the two types of conduction channels where diffusion dominates on large
timescales.Comment: 20 pages, 5 figure
Time Evolution within a Comoving Window: Scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains
We present a modification of Matrix Product State time evolution to simulate
the propagation of signal fronts on infinite one-dimensional systems. We
restrict the calculation to a window moving along with a signal, which by the
Lieb-Robinson bound is contained within a light cone. Signal fronts can be
studied unperturbed and with high precision for much longer times than on
finite systems. Entanglement inside the window is naturally small, greatly
lowering computational effort. We investigate the time evolution of the
transverse field Ising (TFI) model and of the S=1/2 XXZ antiferromagnet in
their symmetry broken phases after several different local quantum quenches.
In both models, we observe distinct magnetization plateaus at the signal
front for very large times, resembling those previously observed for the
particle density of tight binding (TB) fermions. We show that the normalized
difference to the magnetization of the ground state exhibits similar scaling
behaviour as the density of TB fermions. In the XXZ model there is an
additional internal structure of the signal front due to pairing, and wider
plateaus with tight binding scaling exponents for the normalized excess
magnetization. We also observe parameter dependent interaction effects between
individual plateaus, resulting in a slight spatial compression of the plateau
widths.
In the TFI model, we additionally find that for an initial Jordan-Wigner
domain wall state, the complete time evolution of the normalized excess
longitudinal magnetization agrees exactly with the particle density of TB
fermions.Comment: 10 pages with 5 figures. Appendix with 23 pages, 13 figures and 4
tables. Largely extended and improved versio
Quantum Quench from a Thermal Initial State
We consider a quantum quench in a system of free bosons, starting from a
thermal initial state. As in the case where the system is initially in the
ground state, any finite subsystem eventually reaches a stationary thermal
state with a momentum-dependent effective temperature. We find that this can,
in some cases, even be lower than the initial temperature. We also study
lattice effects and discuss more general types of quenches.Comment: 6 pages, 2 figures; short published version, added references, minor
change
Bloggers Behavior and Emergent Communities in Blog Space
Interactions between users in cyberspace may lead to phenomena different from
those observed in common social networks. Here we analyse large data sets about
users and Blogs which they write and comment, mapped onto a bipartite graph. In
such enlarged Blog space we trace user activity over time, which results in
robust temporal patterns of user--Blog behavior and the emergence of
communities. With the spectral methods applied to the projection on weighted
user network we detect clusters of users related to their common interests and
habits. Our results suggest that different mechanisms may play the role in the
case of very popular Blogs. Our analysis makes a suitable basis for theoretical
modeling of the evolution of cyber communities and for practical study of the
data, in particular for an efficient search of interesting Blog clusters and
further retrieval of their contents by text analysis
Developing an intervention to facilitate family communication about inherited genetic conditions, and training genetic counsellors in its delivery.
Many families experience difficulty in talking about an inherited genetic condition that affects one or more of them. There have now been a number of studies identifying the issues in detail, however few have developed interventions to assist families. The SPRinG collaborative have used the UK Medical Research Council's guidance on Developing and Evaluating Complex Interventions, to work with families and genetic counsellors (GCs) to co-design a psycho-educational intervention to facilitate family communication and promote better coping and adaptation to living with an inherited genetic condition for parents and their children (<18 years). The intervention is modelled on multi-family discussion groups (MFDGs) used in psychiatric settings. The MFDG was developed and tested over three phases. First focus groups with parents, young people, children and health professionals discussed whether MFDG was acceptable and proposed a suitable design. Using evidence and focus group data, the intervention and a training manual were developed and three GCs were trained in its delivery. Finally, a prototype MFDG was led by a family therapist and co-facilitated by the three GCs. Data analysis showed that families attending the focus groups and intervention thought MFDG highly beneficial, and the pilot sessions had a significant impact on their family' functioning. We also demonstrated that it is possible to train GCs to deliver the MFDG intervention. Further studies are now required to test the feasibility of undertaking a definitive randomised controlled trial to evaluate its effectiveness in improving family outcomes before implementing into genetic counselling practice.The National Institute of Health Research funded the study but any views expressed do not necessarily reflect those of the Authority. Funded by NIHR reference number: RP-DG-1211-10015
A minimal model for congestion phenomena on complex networks
We study a minimal model of traffic flows in complex networks, simple enough
to get analytical results, but with a very rich phenomenology, presenting
continuous, discontinuous as well as hybrid phase transitions between a
free-flow phase and a congested phase, critical points and different scaling
behaviors in the system size. It consists of random walkers on a queueing
network with one-range repulsion, where particles can be destroyed only if they
can move. We focus on the dependence on the topology as well as on the level of
traffic control. We are able to obtain transition curves and phase diagrams at
analytical level for the ensemble of uncorrelated networks and numerically for
single instances. We find that traffic control improves global performance,
enlarging the free-flow region in parameter space only in heterogeneous
networks. Traffic control introduces non-linear effects and, beyond a critical
strength, may trigger the appearance of a congested phase in a discontinuous
manner. The model also reproduces the cross-over in the scaling of traffic
fluctuations empirically observed in the Internet, and moreover, a conserved
version can reproduce qualitatively some stylized facts of traffic in
transportation networks
- …