6,670 research outputs found
Short periodic orbits theory for partially open quantum maps
We extend the semiclassical theory of short periodic orbits [Phys. Rev. E
{\bf 80}, 035202(R) (2009)] to partially open quantum maps. They correspond to
classical maps where the trajectories are partially bounced back due to a
finite reflectivity . These maps are representative of a class that has many
experimental applications. The open scar functions are conveniently redefined,
providing a suitable tool for the investigation of these kind of systems. Our
theory is applied to the paradigmatic partially open tribaker map. We find that
the set of periodic orbits that belong to the classical repeller of the open
map () are able to support the set of long-lived resonances of the
partially open quantum map in a perturbative regime. By including the most
relevant trajectories outside of this set, the validity of the approximation is
extended to a broad range of values. Finally, we identify the details of
the transition from qualitatively open to qualitatively closed behaviour,
providing an explanation in terms of short periodic orbits.Comment: 6 pages, 4 figure
Reaction rate calculation with time-dependent invariant manifolds
The identification of trajectories that contribute to the reaction rate is
the crucial dynamical ingredient in any classical chemical reactivity
calculation. This problem often requires a full scale numerical simulation of
the dynamics, in particular if the reactive system is exposed to the influence
of a heat bath. As an efficient alternative, we propose here to compute
invariant surfaces in the phase space of the reactive system that separate
reactive from nonreactive trajectories. The location of these invariant
manifolds depends both on time and on the realization of the driving force
exerted by the bath. These manifolds allow the identification of reactive
trajectories simply from their initial conditions, without the need of any
further simulation. In this paper, we show how these invariant manifolds can be
calculated, and used in a formally exact reaction rate calculation based on
perturbation theory for any multidimensional potential coupled to a noisy
environment
The role of short periodic orbits in quantum maps with continuous openings
We apply a recently developed semiclassical theory of short periodic orbits
to the continuously open quantum tribaker map. In this paradigmatic system the
trajectories are partially bounced back according to continuous reflectivity
functions. This is relevant in many situations that include optical
microresonators and more complicated boundary conditions. In a perturbative
regime, the shortest periodic orbits belonging to the classical repeller of the
open map - a cantor set given by a region of exactly zero reflectivity - prove
to be extremely robust in supporting a set of long-lived resonances of the
continuously open quantum maps. Moreover, for step like functions a significant
reduction in the number needed is obtained, similarly to the completely open
situation. This happens despite a strong change in the spectral properties when
compared to the discontinuous reflectivity case.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1604.0181
The scar mechanism revisited
Unstable periodic orbits are known to originate scars on some eigenfunctions
of classically chaotic systems through recurrences causing that some part of an
initial distribution of quantum probability in its vicinity returns
periodically close to the initial point. In the energy domain, these
recurrences are seen to accumulate quantum density along the orbit by a
constructive interference mechanism when the appropriate quantization (on the
action of the scarring orbit) is fulfilled. Other quantized phase space
circuits, such as those defined by homoclinic tori, are also important in the
coherent transport of quantum density in chaotic systems. The relationship of
this secondary quantum transport mechanism with the standard mechanism for
scarring is here discussed and analyzed.Comment: 6 pages, 6 figure
Efficiency of Human Activity on Information Spreading on Twitter
Understanding the collective reaction to individual actions is key to
effectively spread information in social media. In this work we define
efficiency on Twitter, as the ratio between the emergent spreading process and
the activity employed by the user. We characterize this property by means of a
quantitative analysis of the structural and dynamical patterns emergent from
human interactions, and show it to be universal across several Twitter
conversations. We found that some influential users efficiently cause
remarkable collective reactions by each message sent, while the majority of
users must employ extremely larger efforts to reach similar effects. Next we
propose a model that reproduces the retweet cascades occurring on Twitter to
explain the emergent distribution of the user efficiency. The model shows that
the dynamical patterns of the conversations are strongly conditioned by the
topology of the underlying network. We conclude that the appearance of a small
fraction of extremely efficient users results from the heterogeneity of the
followers network and independently of the individual user behavior.Comment: 29 pages, 10 figure
Input-output theory for spin-photon coupling in Si double quantum dots
The interaction of qubits via microwave frequency photons enables
long-distance qubit-qubit coupling and facilitates the realization of a
large-scale quantum processor. However, qubits based on electron spins in
semiconductor quantum dots have proven challenging to couple to microwave
photons. In this theoretical work we show that a sizable coupling for a single
electron spin is possible via spin-charge hybridization using a magnetic field
gradient in a silicon double quantum dot. Based on parameters already shown in
recent experiments, we predict optimal working points to achieve a coherent
spin-photon coupling, an essential ingredient for the generation of long-range
entanglement. Furthermore, we employ input-output theory to identify observable
signatures of spin-photon coupling in the cavity output field, which may
provide guidance to the experimental search for strong coupling in such
spin-photon systems and opens the way to cavity-based readout of the spin
qubit
- …