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The identification of trajectories that contribute to the reaction rate is the crucial dynamical ingredient
in any classical chemical reactivity calculation. This problem often requires a full scale numerical
simulation of the dynamics, in particular if the reactive system is exposed to the influence of a heat
bath. As an efficient alternative, we propose here to compute invariant surfaces in the phase space of
the reactive system that separate reactive from nonreactive trajectories. The location of these invariant
manifolds depends both on time and on the realization of the driving force exerted by the bath.
These manifolds allow the identification of reactive trajectories simply from their initial conditions,
without the need of any further simulation. In this paper, we show how these invariant manifolds
can be calculated, and used in a formally exact reaction rate calculation based on perturbation theory
for any multidimensional potential coupled to a noisy environment. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4726125]

I. INTRODUCTION

Transition state theory (TST) provides the conceptual
framework for large parts of reaction rate theory. Originally
developed to describe the reactivity of small molecules,1–3

it was later extended to encompass a wide variety of pro-
cesses in different branches of science, whose only common-
ality is a transition from well-defined “reactant” to “product”
states.4–13 The reason for this success is that TST proposes
a simple answer to the two central problems of reaction dy-
namics: It identifies a reaction mechanism, and provides at the
same time a simple approximation to the reaction rate.

More specifically, TST is based on the observation that
the rate limiting step in many reactions is the crossing of an
energetic barrier. The top of this barrier then forms a bot-
tleneck in the phase space of the reactive system. A reac-
tion can only take place if the barrier is crossed. If a di-
viding surface (DS) between reactant and product regions of
phase space is placed close to the bottleneck, the reaction rate
can be computed from the steady-state flux through that sur-
face. A strictly recrossing free DS can be constructed in the
phase space of reactive systems with arbitrarily many degrees
of freedom.12, 14, 15 The simplest approximation to the rate
is then obtained under the assumption that reactive classical
trajectories cross the DS only once and never return. This
assumption is often appropriate for reactions in the gas phase
if the DS is adequately chosen, but even then many reac-
tions strongly violate this assumption. Moreover, if the sys-
tem is strongly coupled to an environment, for example, a
liquid solvent, the no-recrossing assumption is usually impos-
sible to enforce strictly, and often any DS is crossed many
times by a typical trajectory. As a result, a TST rate calcula-
tion significantly overestimates the reaction rate. For this rea-
son, the focus of TST has long been to construct a DS that

eliminates or at least minimizes recrossings (see Ref. 16 for a
review).

The recrossing problem can be solved if the reactive tra-
jectories that contribute to the rate can be identified reliably.
An obvious means to this end is the numerical simulation of
representative trajectories under the influence of the environ-
ment. However, such calculations are usually very time con-
suming. The advantage of the TST approximation is its sim-
plicity. It identifies reactive trajectories simply by noting that
they cross the DS from the reactant to the product side. This
criterion, which fails if recrossing cannot be ruled out, is easy
to use because it only takes account of the instantaneous ve-
locity with which a trajectory crosses the DS. Nevertheless, it
raises the prospect of a criterion to identify reactive trajecto-
ries simply from their initial conditions, without the need to
study their time evolution. In the present paper we will derive
such a criterion and demonstrate how it can be used in a rate
calculation.

The Langevin equation has been widely used to model
the interaction of a reactive system with a surrounding heat
bath.17–19 Being a classical model, this description neglects
quantum effects such as barrier tunnelling, which can be
important in the case of light particles,20 and the interac-
tion with excited surfaces through conical intersections.21

In this setting, Kramers22 derived expressions for the rate
of escape across a parabolic barrier that apply separately
in the limits of weak and strong damping. The generalized
Langevin equation is equivalent to a Hamiltonian model in
which the reactive system is bilinearly coupled to a bath of
harmonic oscillators.23 This reformulation allowed extensions
of Kramers’ rate theory that apply to situations with arbi-
trary friction24, 25 or that include corrections due to anhar-
monic barriers.26–28 In this respect, it has long been predicted
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that the rates of activated processes should rise with the cou-
pling to the solvent in the weak coupling regime. However,
its direct observation in particle-based models had been elu-
sive because the coupling typically places the processes in the
spatial-diffusion limited regime wherein rates decrease with
increasing friction. Recently, the Kramers turnover in the rate
with microscopic friction has been observed in molecular dy-
namics trajectories calculation of the LiNC � LiCN in a bath
of Ar atoms.29 This observation provided direct and unam-
biguous evidence for the energy-diffusion regime in which
rates increase with friction. In the present work we will not
consider any explicit Hamiltonian model for the heat bath; its
influence will instead be described by means of a Langevin
equation. This approach allows to work within the finite-
dimensional phase space of the reactive system alone, rather
than the infinite-dimensional phase space of the bath. This is
advantageous from a computational point of view and also
conceptually convenient because the phase space is easier to
visualize in low dimension.

The aim of this paper is to describe the geometric phase
space structures that allow to classify a trajectory as reac-
tive or nonreactive just by looking at its initial condition, thus
avoiding the need of carrying out a numerical simulation. Be-
cause the fate of a trajectory with a given initial condition
depends on the external force to which it is exposed, any such
criterion must take account of the precise realization of that
force. A general framework to do that was proposed in a re-
cent series of papers,30–34 including the identification of re-
active trajectories32 and the rate calculation.33 It was there
shown that the Langevin equation gives rise to a specific tra-
jectory called the transition state (TS) trajectory that remains
in the vicinity of the energetic barrier for all times, without
ever descending into any of the potential wells. This TS trajec-
tory depends on the realization of the noise, and takes over the
role of the fixed saddle point in the conventional TST. A cru-
cial observation in Refs. 30 and 31 for the case of a harmonic
barrier is that the dynamics described by the Langevin equa-
tion become noiseless when expressed in a time-dependent
coordinate system for which the TS trajectory is the moving
origin. In the system of relative coordinates it is easy to iden-
tify a TST DS that is rigorously free from recrossing. It gives
rise to a DS in the original, space fixed coordinate system that
is still recrossing-free. This DS is time-dependent since it is
attached to the TS trajectory, and it moves through phase
space with it. Even more significantly, this construction yields
surfaces in phase space that separate reactive from nonreac-
tive trajectories. These surfaces are the stable and unstable
manifolds of the TS trajectory, and they also depend on time
and on the realization of the noise. Once they are known, ini-
tial conditions on one side of the surface are immediately clas-
sified as reactive, while those on the other side are nonreac-
tive. Thus, the existence of these invariant manifolds solves
the diagnostic problem of standard rate theory that was ex-
plained above. They were used in Ref. 33 to obtain a com-
pact rate formula, strictly valid only for harmonic barriers. An
ad hoc application to systems with an anharmonic barrier pro-
duced, however, promising results.32, 33

In the present paper, we develop a rigorous general-
ization of the time-dependent TST formalism applicable to

anharmonic barriers using perturbation theory. We show that
the invariant manifolds persist in anharmonic systems and,
more importantly, they retain the ability to distinguish be-
tween reactive and nonreactive trajectories, thus determining
the chemical reactivity of the system. Finally, a simple pertur-
bative scheme that allows one to calculate the invariant man-
ifolds for a specific anharmonic potential barrier will be pre-
sented, and it will be used to obtain an analytic expansion for
the reaction rate. In the first part of the paper, we restrict our
study to the one-dimensional case. In this situation, the finite
barrier corrections that were obtained in Refs. 26–28 will be
recovered. We have already given a brief account of these re-
sults in Ref. 35. We will here supply the details of the calcula-
tion that could not be presented within the confines of a Com-
munication. We will then introduce the modifications to the
theory that are necessary to accommodate multidimensional
reactive systems. The efficacy of our method is demonstrated
by deriving the first- and second-order corrections to the reac-
tion rate in the two-dimensional model potential already used
in Refs. 32 and 33.

A final point is worth commenting on in this Intro-
duction. Perturbative rate calculations on multidimensional
anharmonic barriers have also been recently reported in
Refs. 36–39. As in the present work, these authors based their
work on the identification of the TS trajectory for the har-
monic limit in Refs. 30 and 31. Our work, however, goes be-
yond those previous results in two main respects. First, and
most importantly, it provides an explicit and detailed descrip-
tion of the invariant geometric structures in phase space that
govern the reaction dynamics, rather than studying them im-
plicitly through approximate invariants and their imprint on
an ensemble of trajectories. Second, whereas the normal form
procedure in Refs. 36–39 aims at constructing a coordinate
system in which the dynamics in the neighborhood of the bar-
rier can be simplified in general terms, we derive a version of
the perturbation theory that is specifically directed at calcu-
lating the invariant manifolds that are relevant to reaction rate
theory. This perturbative scheme can therefore be much sim-
pler, and permits the analytical computation of corrections to
Kramers’ transmission factor for anharmonic potentials. In-
deed, the calculation of the invariant manifolds can be easily
carried out by hand, whereas a normal form transformation al-
ways requires computer assistance. This ease of computation
makes the invariant manifolds an attractive tool for practical
rate calculations.

The outline of the paper is as follows. In Sec. II we
present the basic definitions and results of rate theory that
will be used to develop our method. Section III is devoted
to a qualitative description of the invariant manifolds that
give structure to the dynamics in the vicinity of an energy
barrier, and Sec. IV presents a method for their calcula-
tion. In Sec. V a general expression for the reaction rate
in the case of an anharmonic barrier is derived. A descrip-
tion of the statistical properties of the invariant manifolds
that are required to evaluate the rate formula and the per-
turbative and numerical results for various one-dimensional
potentials are also given. Finally, in Sec. VI we discuss
the modifications to the foregoing developments that are
required in multidimensional systems, and we also present
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results for the reaction rate on an anharmonic two-
dimensional barrier.

II. FUNDAMENTALS OF RATE THEORY

In this section we outline the fundamentals of reaction
rate theory that will be used in the rest of the paper. The reader
is referred to Refs. 17–19 for more details.

We assume that the reactant and product regions in con-
figuration space are separated by a DS that is characterized
by the value x = x

‡
of a generalized reaction coordinate x,

which we choose such that the product region is given by x >

x‡. The reaction rate is then given by the flux-over-population
expression

k = J

N
, (1)

where N is the average population of the reactant region and

J = 〈vx χr(vx, q⊥, v⊥)〉α,IC (2)

is the reactive flux out of that region. Here, vx denotes the
velocity component perpendicular to the DS, q⊥ is the coor-
dinates within the surface, and v⊥ is the corresponding veloci-
ties. The characteristic function χr(vx, q⊥, v⊥) takes the value
1 if the trajectory starting at x = x‡, vx, q⊥, v⊥ is reactive,
i.e., moves to products for large times, and 0 otherwise. Its
purpose is to ensure that only reactive trajectories contribute
to the reactive flux. The average in Eq. (2) extends over the
realizations, α, of the external noise and over a thermal equi-
librium ensemble of initial conditions that are constrained to
lie on the DS. The latter ensemble is described by a probabil-
ity density function

p(x, vx, q⊥, v⊥) = δ(x − x‡) exp

(
− v2

x

2kBT

)
p⊥(q⊥, v⊥),

(3)
which includes a Boltzmann distribution of the velocities vx

and a Boltzmann distribution

p⊥(q⊥, v⊥) = 1

Z
exp

(
−v2

⊥/2 + U (x‡, q⊥)

kBT

)
(4)

of the transverse coordinates and velocities. The factor Z in
Eq. (4) is the partition function of the transverse motion. It
ensures that ∫

dq⊥ dv⊥ p(q⊥, v⊥) = 1.

In Eq. (3) we have used mass-scaled coordinates and we have
left out an overall normalization factor. In particular, we did
not include the Arrhenius factor

exp

(
−�E‡

kBT

)

that includes the activation energy �E‡ of the reaction. The
overall normalization of the distribution function is well un-
derstood, and it is irrelevant to the calculation of the trans-
mission factor (7) below, on which we will focus in this work.
For simplicity, we can therefore work with the unnormalized
distribution function (3).

The characteristic function χr in Eq. (2) encodes the en-
tire complexity of the reaction dynamics on an anharmonic
barrier. The main task of a reaction rate calculation is to eval-
uate this function. In general, this can only be achieved by a
numerical simulation. A simple approximation to this crucial
ingredient is provided by TST. It assumes that no trajectory
can cross the DS more than once. As a consequence, every
trajectory that crosses the DS from the reactant to the prod-
uct side must be reactive, every trajectory that crosses in the
opposite direction must be nonreactive. To implement this ap-
proximation, we replace the characteristic function in Eq. (2)
by

χTST(vx, q⊥, v⊥) =
{

1 : vx > 0,

0 : vx < 0.
(5)

This gives rise to the TST approximation to the rate constant

kTST = 〈vx χTST(vx, q⊥, v⊥)〉IC

N
, (6)

in which the average over the noise α can be suppressed be-
cause χTST does not depend on it.

When the no-recrossing assumption of TST is not satis-
fied, the approximation (6) will overestimate the rate, often by
a large factor. To quantify the effects of non-TST behavior, a
transmission factor,

κ = k

kTST
≤ 1,

is introduced that relates the exact rate to the TST approxima-
tion. It can be obtained from the ratio of the flux across the
barrier to its TST approximation:

κ = 〈vxχr(vx, q⊥, v⊥)〉α,IC

〈vxχTST(vx, q⊥, v⊥)〉IC
. (7)

To evaluate (7) numerically, one can randomly sample initial
conditions and noise sequences from the appropriate ensem-
bles, and simulate the behavior of each trajectory until its en-
ergy is so far below the barrier top that it can be regarded as
having been thermalized on either the reactant or the prod-
uct side of the barrier. The trajectory can then be classified as
reactive or non-reactive depending on what state it reached.
All numerical results presented in this work were obtained in
this way.

This algorithm is conceptually straightforward, but com-
putationally costly. It would be highly desirable to find a
criterion that allows one to identify the reactive trajecto-
ries without having to carry out a numerical simulation.
Sections III–VI will describe the phase space structures that
will provide such a criterion.

III. TIME-DEPENDENT INVARIANT MANIFOLDS

A. The Langevin model

We begin by specifying the model that will be used. The
Langevin equation describes the reduced dynamics of a low-
dimensional system coupled to an external heat bath.17 It is
given by

q̈ = −∇qU (q) − �q̇ + ξα(t), (8)
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where q is an N dimensional vector of mass-scaled coordi-
nates, U(q) is the potential of mean force, � is a symmet-
ric positive-definite N × N matrix of damping constants, and
ξα(t) is the fluctuating force exerted by the heat bath. It is con-
nected to the friction matrix � by the fluctuation–dissipation
theorem40 〈

ξα(t)ξT
α(t ′)

〉
α

= 2kBT � δ(t − t ′), (9)

where kB is the Boltzmann constant and T is the temperature.
Throughout most of this work, we consider a one-dimensional
problem in which the friction matrix � simply reduces to a
scalar γ , and the position vector q contains a single coordinate
x. If we expand the potential of mean force around its saddle
point, we can write it as

U (x) = − 1

2
ω2

bx
2 + ε

c3

3
x3 + ε2 c4

4
x4 + · · · , (10)

where ε is a formal perturbation parameter that serves only
to keep track of the orders of perturbation theory, and finally
will be set to ε = 1. For the mean force itself we write

− dU

dx
= ω2

bx + f (x), (11)

where f (x) denotes the anharmonic parts of the force.

B. Time-dependent transition states

Because the Langevin equation (8) is a second-order dif-
ferential equation, its phase space is two-dimensional, with
coordinates x and vx = ẋ. As it was observed in Refs. 30–32,
the dynamics of the Langevin equation in the harmonic ap-
proximation can be diagonalized by rewriting it in coordinates
u and s given by

u = vx − λsx

λu − λs
, s = −vx + λux

λu − λs
, (12)

or

x = u + s, vx = λuu + λss. (13)

The constants

λs,u = − 1

2

(
γ ±

√
γ 2 + 4ω2

b

)
(14)

are the eigenvalues that arise in the diagonalization. They sat-
isfy λs < 0 < λu and

λu + λs = −γ, λuλs = −ω2
b.

In the new set of coordinates, the equations of motion read

u̇ = λuu + f (x)

λu − λs
+ 1

λu − λs
ξα(t),

ṡ = λss − f (x)

λu − λs
− 1

λu − λs
ξα(t). (15)

These equations decouple in the harmonic approximation, i.e.,
if f (x) = 0, but they are still subject to the time-dependent
stochastic driving force ξα(t). This time dependence can be
removed by the coordinate shift

�u = u − u‡, �s = s − s‡, (16)

where

u‡(t) = 1

λu − λs
S[λu, ξα; t], s‡(t) = − 1

λu−λs
S[λs, ξα; t],

(17)
and the S functionals30, 41 are given by

Sτ [μ, g; t] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫ ∞

t

g(τ ) exp(μ(t − τ )) dτ : Re μ > 0,

+
∫ t

−∞
g(τ ) exp(μ(t − τ )) dτ : Re μ < 0.

(18)
The subscript τ is used in the S functional to indicate the inte-
gration variable. This subscript will be left out whenever this
does not cause any ambiguities. Similarly, we have for the
sake of simplicity not indicated in our notation that u‡(t) and
s‡(t) depend on the realization α of the noise, although they
both obviously do.

The functions u‡(t) and s‡(t) solve the equations of mo-
tion in the harmonic limit f (x) = 0. They can therefore be
regarded as the coordinates of a special trajectory called the
TS trajectory. This trajectory is distinguished from all other
trajectories that are exposed to the same noise by the fact
that it remains in the vicinity of the saddle point for all
times, whereas a typical trajectory would descend into ei-
ther the reactant or the product well both in the remote past
and in the distant future. Accordingly, when using coordi-
nates �u and �s, we are describing a trajectory relative to
the TS trajectory, which acts as a moving coordinate origin.
In what follows, we will refer to �u and �s as relative coor-
dinates and to the original u and s, or x and vx as space fixed
coordinates.

The equations of motion in relative coordinates are

�u̇ = λu�u + f (x)

λu − λs
, (19a)

�ṡ = λs�s − f (x)

λu − λs
. (19b)

At first sight, it appears that the time-dependent and stochas-
tic shift (16) has removed both the time-dependence and the
dependence on the realization α of the noise. However, this
is only true in the harmonic approximation. If we express the
position coordinate x in terms of the relative coordinates �u
and �s as

x = x‡ + �u + �s, (20)

with x‡ = u‡ + s‡, Eq. (19) turns into

�u̇ = λu�u + f (x‡ + �u + �s)

λu − λs
, (21a)

�ṡ = λs�s − f (x‡ + �u + �s)

λu − λs
. (21b)

The position x‡(t) of the TS trajectory represents a time-
dependent stochastic driving in these equations of motion.
Nevertheless, the coordinate shift has removed the stochastic
driving from the leading-order terms in Eq. (21) and pushed
it into the anharmonic perturbation.
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The description of the geometric phase space structure
in the vicinity of the saddle point is most easily done if one
starts from the harmonic limit. A full discussion can be found
in Refs. 30 and 31. The equations of motion (19) decouple
and become time independent when f (x) = 0, and they can
then be easily solved by writing

�u(t) = �u(0) eλut ,

�s(t) = �s(0) eλst . (22)

Since λu > 0 and λs < 0, the coordinate �u grows exponen-
tially in time, whereas �s shrinks. Therefore, �u and �s
correspond to unstable and stable directions in phase space,
respectively. In particular, the lines �u = 0 and �s = 0
are invariant under the dynamics. A trajectory that starts on
the line �u = 0 will asymptotically approach the origin as
t → ∞; this line is called the stable manifold of the origin. A
trajectory on the line �s = 0 will move away from the origin
as t → ∞, but it will approach the origin as t → −∞; this
line is called the unstable manifold of the origin.

The stable and unstable manifolds of the origin, together
with several typical trajectories in relative coordinates, are
shown in Fig. 1(a). The invariant manifolds separate trajec-
tories with different qualitative behavior. Trajectories above
the stable manifold, i.e., with larger relative velocity, move to
the product side of the barrier for asymptotically long times,
whereas trajectories below the stable manifold move to the
reactant side. Similarly, trajectories above the unstable mani-
fold come from the reactant side in the distant past, whereas

reactive

non−
reactive

�    u

�s

(a)

�x

�v

(b)

(x‡(t),v‡(t))
�u

�s

x

vx

V‡

(c)

(x‡(t),v‡(t))
�u

�s

x

vx

V‡

(x‡(t),v‡(t))

x

vx (d)

FIG. 1. Phase space view of the time-dependent invariant manifolds of the
Langevin equation. (a) Invariant manifolds are time-independent in the har-
monic approximation and in relative coordinates. (b) In space-fixed coordi-
nates, the invariant manifolds are attached to the TS trajectory and move
through phase space with it. (c) Anharmonic coupling deforms the manifolds.
Both their position and their shape are stochastically time dependent. (d) In-
variant manifolds can deviate strongly from the harmonic approximation if
the anharmonicities are strong.

trajectories below the unstable manifold come from the
product side.

For a reaction rate calculation we need to ascertain
whether a trajectory will turn into reactants or products in
the future. In our approach this sentence is rephrased into the
condition: We need to decide whether a trajectory lies above
or below the stable manifold. In other words, the stable mani-
fold encodes the information about the reaction dynamics that
is most relevant to us. We will therefore focus on the sta-
ble manifold in what follows, largely ignoring the unstable
manifold.

We can return to space fixed coordinates by undoing the
time-dependent shift (16). After the shift, the stable and un-
stable manifolds are not attached to the origin of the coor-
dinate system any more, but instead to the TS trajectory as
a moving origin, as shown in Fig. 1(b). Since the TS trajec-
tory is time dependent, the manifolds will move through phase
space with it. Nevertheless, they still separate trajectories
with different asymptotic behaviors. Given a trajectory with a
given initial condition at a certain time, it can be classified as
reactive or non-reactive by knowing the instantaneous posi-
tion of the stable manifold at that time. Through the TS trajec-
tory, that instantaneous position will depend on the realization
of the noise.

It is clear from Fig. 1(b) that at any time and for any
realization of the noise the stable manifold intersects the axis
x = 0 at a point with a velocity V ‡. Trajectories with initial
positions x = 0 and initial velocities vx > V ‡ are reactive,
while trajectories with initial velocities vx < V ‡ are not. The
critical velocity V ‡ depends on time and on the realization of
the noise. For the harmonic approximation, it was shown in
Ref. 33, and it will be rederived below, that

V ‡ ≡ V
‡

0 = (λu − λs)u
‡(0). (23)

Since the critical velocity characterizes reactive trajectories,
the transmission factor (7) can be expressed in terms of V ‡

(see Ref. 33 and Sec. V below).
This picture of the invariant manifolds was introduced in

Refs. 30 and 31 and applied to rate calculations in Refs. 32
and 33. The main purpose of the present work is to explore
how this picture changes when anharmonicities of the barrier
potential are taken into account. In this case the equations of
motion (19) are coupled in a nonlinear time-dependent way,
and they cannot be solved easily. However, as long as the cou-
pling is sufficiently weak, one can expect to find a TS trajec-
tory with its associated stable and unstable manifolds that are
close to those in the harmonic approximation. Indeed, there
are general theorems in the theory of stochastic dynamical
systems42 that guarantee the persistence of these structures.
As shown in Fig. 1(c), the invariant manifolds in an anhar-
monic system will be tangent to their harmonic approxima-
tions at the TS trajectory, but they will not be straight lines
anymore. Because the coupling term in Eqs. (19) is stochasti-
cally time dependent, the shapes of the invariant manifolds as
well as their positions in phase space depend on time and on
the realization of the noise.

The intersection of the stable manifold with the axis
x = 0 will give rise to a critical velocity V ‡ such that tra-
jectories with initial velocities larger than V ‡ will be reactive,
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those with smaller initial velocities will not. The critical ve-
locity can therefore be used in a rate calculation in an anhar-
monic system just as it can in the harmonic approximation,
though its value will be different from (23). A method to cal-
culate the critical velocity will be developed in Sec. IV.

In general it cannot be guaranteed that there will only be
a single intersection between the stable manifold and the axis
x = 0. In fact, if the reaction potential has wells on the reac-
tant and/or product side of the barrier, it is likely that there
will be further intersections, as illustrated in Fig. 1(d). If a
trajectory on the stable manifold is followed backwards in
time, it will descend from the barrier, settling in one of the
wells for some time. If it is followed for long enough, it will
eventually cross the barrier again into the other well. In do-
ing so, it must cross the line x = 0 again, and thus give rise
to additional intersections between the stable manifold and
that line. However, as these additional intersections stem from
previous barrier crossings, they must be neglected in the rate
calculation. Only for extremely strong nonlinearities addi-
tional intersections that are not separated by periods in which
the trajectory was equilibrated in one of the wells will be
found. We will neglect that possibility in what follows. In-
stead, we will apply perturbation theory to calculate a value
for the critical velocity that reduces to its harmonic approxi-
mation in the appropriate limit.

The TS trajectory (17) solves the equations of motion
(15) in the harmonic limit, but not in the presence of anhar-
monic coupling. Strictly speaking, therefore, Eq. (17) does
not define a TS trajectory on an anharmonic potential. Such a
trajectory could be obtained by a perturbative expansion sim-
ilar to the one to be developed in Sec. IV. For our purposes,
however, this will not be necessary. The harmonic TS trajec-
tory forms a suitable basis for the perturbation theory. We will
therefore use the notation u‡, s‡, and x‡ exclusively to denote
the harmonic approximation to the TS trajectory.

IV. PERTURBATIVE CALCULATION
OF THE STABLE MANIFOLD

The critical velocity is defined by the intersection of the
line x = 0 with the stable manifold of the TS trajectory. The
stable manifold contains all those trajectories that approach
the TS trajectory as t → ∞. They remain bounded for large
times. Solutions to the equations of motion (21) that sat-
isfy this boundary condition at large time lie on the stable
manifold.

Equation (21a) can be formally solved in terms of the S
functional (18) as

�u(t) = Ceλut + 1

λu − λs
S[λu, f (x‡ + �u + �s); t].

Notice that this is only a formal solution due to the presence
of the unknown function �u in the r.h.s. of the equation. Fur-
thermore, the S functional is undefined for most trajectories,
only existing for the trajectories that remain bounded in the
remote future. However, these are precisely the trajectories
we are interested in. For consistency, we must then set C = 0,
just as was done in Refs. 30 and 31 in the construction of the
TS trajectory. A trajectory on the unstable manifold therefore

satisfies the integral equation

�u(t) = 1

λu − λs
S[λu, f (x‡ + �u + �s); t]. (24)

This expression automatically incorporates the boundary con-
dition at t → ∞ that we wish to impose.

For the stable component, we might be tempted to use the
analogous formal solution

�s(t) = Ceλst − 1

λu − λs
S[λs, f (x‡ + �u + �s); t].

However, the S functional for a negative eigenvalue depends
on the infinite past of its argument and is well defined only for
trajectories that remain bounded in the past. Most trajectories
on the stable manifold, except for the TS trajectory itself, will
not satisfy this condition. This difficulty can be circumvented
by using the modified S functional

S̄τ [μ, g; t] =
∫ t

0
g(τ )eμ(t−τ ) dτ (25)

that is well defined for all values of μ. It satisfies the differen-
tial equation

d

dt
S̄[μ, g; t] = μ S̄[μ, g; t] + g(t)

and the initial condition S̄[μ, g; 0] = 0. With this functional,
a formal solution to the equation of motion (21b) can be writ-
ten as

�s(t) = �s(0)eλst − 1

λu − λs
S̄[λs, f (x‡ + �u + �s); t].

(26)
Note that this integral equation does not impose any boundary
condition on the function �s, thus leaving free choice of the
initial condition �s(0).

The critical velocity V ‡ is determined by the condition
that the trajectory with initial conditions x(0) = 0 and v(0)
= V ‡ satisfies the integral equations (24) and (26). The first
one of these conditions can be rewritten as

�s(0) = − x‡(0) − �u(0),

such that the initial condition for �s, which is needed in
Eq. (26), is known once the initial value of �u has been de-
termined from Eq. (24). The critical velocity can then be ob-
tained from

V ‡ = v(0) = λuu(0) + λss(0)

= (λu − λs)u(0) as x(0) = u(0) + s(0) = 0

= (λu − λs)[u
‡(0) + �u(0)]. (27)

In the harmonic approximation the trajectory that starts
in the DS x = 0 and lies in the stable manifold is given by

�u0(t) = 0 and �s0(t) = − x‡(0)eλst . (28)

For this case, Eq. (27) leads back to the result (23)

V
‡

0 = (λu − λs)u
‡(0).

When the solution (28) is substituted into the integral equa-
tions (24) or (26), the coordinate x = x‡ + �u + �s is
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replaced by

X(t) = x‡(t) − eλst x‡(0). (29)

This function represents the harmonic approximation to the
coordinate x(t) of the trajectory under study. Moreover, it con-
stitutes a suitable basis of the perturbative expansion.

The leading-order correction to the critical velocity can
be obtained from (24) as

�ulead(t) = 1

λu − λs
S[λu, f (X); t],

from which it follows that

V
‡

lead = S[λu, f (X); 0]. (30)

To obtain higher order corrections to the critical velocity
in a systematic manner, we introduce the expansions

V ‡ = V
‡

0 + ε V
‡

1 + ε2 V
‡

2 + · · ·
�u = ε �u1 + ε2 �u2 + · · ·
�s = − x‡ + ε �s1 + ε2 �s2 + · · · .

We will write

�xk = �uk + �sk for k ≥ 1. (31)

Expand the anharmonic term as

f (X + ε �x1 + ε2 �x2 + · · ·) = ε f1 + ε2 f2 + · · · ,
(32)

where terms on the r.h.s. depend on the �xj. Since f is as-
sumed to have an overall order ε or higher, the calculation
of the term fk requires only the knowledge of �xj for j < k.
Equations (24), (26), and (31) then yield the recurrence rela-
tions

�uk(t) = 1

λu − λs
S[λu, fk; t],

�sk(t) = −�uk(0)eλst − 1

λu − λs
S̄[λs, fk; t],

�xk(t) = �uk(t) + �sk(t), (33)

from which it can be finally obtained

V
‡
k = (λu − λs)�uk(0). (34)

The recursion relations (33) can be successively evaluated as
written for k = 1, 2, . . . up to any desired order.

For example, for the anharmonic force corresponding to
the generic one-dimensional potential (10) with only cubic
and quartic terms, expansion (32) gives

f1 = − c3X
2,

f2 = − c4X
3 − 2c3X �x1.

It is then obtained

�u1(t) = − c3

λu − λs
S
[
λu, X

2; t
]
,

�s1(t) = c3

λu − λs
(S

[
λu, X

2; 0
]
eλst + S̄

[
λs, X

2; t
]
),

�x1(t)= c3

λu−λs
(S

[
λu,X

2; 0
]
eλst−S

[
λu,X

2; t
]+S̄

[
λs, X

2; t
]
),

�u2(t) = − 1

λu − λs
S[λu, 2c3X �x1 + c4X

3; t]

= − c4

λu − λs
S[λu, X

3; t] − 2c2
3

(λu − λs)2

× Sτ

[
λu, X(τ )(eλsτ S[λu, X

2; 0] − S[λu, X
2; τ ]

+ S̄[λs, X
2; τ ]); t

]
.

From (34) we have that

V
‡

1 = − c3 S[λu, X
2; 0], (35)

in agreement with Eq. (30), and

V
‡

2 = −c4 S[λu, X
3; 0]− 2c2

3

λu−λs
Sτ [λu, X(τ )(eλsτ S[λu, X

2; 0]

− S[λu, X
2; τ ] + S̄[λs, X

2; τ ]); 0]. (36)

Not surprisingly, the corrections (35) and (36) depend,
through the function X, on the realization of the noise. This
dependence reflects the fact that on an anharmonic potential
not only the position, but also the shape of the invariant man-
ifolds, are stochastically time dependent.

We also calculated the critical velocity numerically for
a given realization of the noise. To this end, an ensemble of
trajectories starting on the DS was propagated numerically.
By recording which trajectories were reactive and which were
not, the value of the critical velocity could be bracketed with
high accuracy. For one fixed realization and for a potential
with only a cubic anharmonic term, the perturbative expan-
sion is compared to numerical results in Fig. 2. There is good
agreement between perturbative and numerical results. Simi-
lar figures are obtained for other realizations of the noise, thus
leading to the same conclusion. Obviously, the size of the first
and second-order corrections, as well as that of the higher or-
der terms that are omitted, varies among different realizations.

In the special case that the anharmonic potential contains
only a quartic term, the perturbation expansion results as an
expansion in powers of ε2, with the odd orders terms null. For
the first two non-zero corrections, a similar calculation shows
that

V
‡

2 = − c4 S[λu, X
3; 0], (37)

-2.4

-2.2

-2.0

-1.8

-0.2 -0.1  0  0.1  0.2
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cr

it

c3

FIG. 2. Critical velocity for a realization of the noise for a one-dimensional
barrier with cubic anharmonicity, c3, for ωb = 1, γ = 2, kBT = 1. Numerical
simulation results (red crosses), harmonic approximation (23) (gray horizon-
tal line), perturbative results to first-order (23) + (35) (green straight line)
and second-order (23) + (35) + (36) (blue line).
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FIG. 3. Critical velocity for one realization of the noise for a one-
dimensional barrier with quartic anharmonicity, c4, for ωb = 1, γ = 2.5,
kBT = 1. Numerical simulation results (red crosses), harmonic approxima-
tion (23) (gray horizontal line), perturbative results to first-order (23) + (37)
(green straight line) and second-order (23) + (37) + (38) (blue line).

which is again consistent with Eq. (30), and

V
‡

4 =− 3c2
4

λu−λs
Sτ [λu, X

2(τ )(eλsτ S[λu, X
3; 0]−S[λu, X

3; τ ]

+ S̄[λs, X
3; τ ]); 0]. (38)

A comparison of the perturbative corrections (37) and (38)
with numerical results is shown in Fig. 3. Again, this com-
parison confirms the accuracy of the perturbative results.

The function X introduced in Eq. (29) plays a special role
in the perturbation expansion because it represents the un-
perturbed trajectory. To obtain a different perspective of this
function, note that the critical velocity should depend only on
the behavior of the stochastic force ξα(t) for t ≥ 0, but not
on the driving at earlier times: Once the initial conditions of a
trajectory at t = 0 are given, its future fate can only depend on
the future noise. The separatrix between reactive and nonre-
active trajectories must therefore also be determined by only
the future noise. Yet the perturbation term in (21) depends, via
x‡(t), on s‡(t), which is given by past noise.

If we split up the integration range of the S functional, we
find that for t ≥ 0

s‡(t) = eλst s‡(0) +
∫ t

0
eλs(t−τ )ξα(τ ) dτ.

The integral in this expression depends only on noise for
t ≥ 0. The term including s‡(0) contains all the dependence
on the past, and it drops out when we form X(t). The variable
X is the simplest modification of x‡ in which the dependence
on the past has been removed.

V. CORRECTIONS TO THE REACTION RATES

A. General rate expressions

In a one-dimensional model, the characteristic function
χr can be expressed in terms of the critical velocity as

χr(vx) =
{

1 : vx > V ‡,

0 : vx < V ‡.
(39)

In contrast to the TST approximation (5), and in spite of its
simplicity, the expression (39) is exact. It allows to evaluate
the average over initial conditions in Eq. (7)—the factor p⊥ in

Eq. (3) being absent in one dimension—to find

κ =
〈
exp

(
− V ‡2

2kBT

)〉
α

, (40)

where only the average over the noise remains. This expres-
sion was derived in Ref. 33 for a harmonic barrier. It is now
clear that the same expression holds also for anharmonic
potentials if the critical velocity V ‡ is suitably modified.
Remarkably, no anharmonic corrections arise in the rate ex-
pression (40).

If we have a perturbative expansion

V ‡ = V
‡

0 + εV
‡

1 + ε2V
‡

2 + · · · , (41)

we can substitute into (40) and expand the exponential to ob-
tain a series of rate corrections

κ = κ0 + εκ1 + ε2κ2 + · · · , (42)

where

κ0 = 〈P 〉α , (43a)

κ1 = − 1

kBT
〈PV

‡
0 V

‡
1 〉α, (43b)

κ2 = 1

2(kBT )2

〈
PV

‡2
0 V

‡2
1

〉
α

− 1

kBT
〈PV

‡
0 V

‡
2 〉α

− 1

2kBT

〈
PV

‡2
1

〉
α

(43c)

with the abbreviation

P = exp

(
− V

‡2
0

2kBT

)
= exp

(
− (λu − λs)2 u‡2(0)

2kBT

)
. (44)

We will now address the problem of evaluating the noise av-
erages in Eq. (43).

B. Distorted correlation functions

The corrections to the critical velocity that appear in the
averages (43) are expressed in terms of the function X(t),
which is in turn given in terms of the components u‡(t) and
s‡(t) of the TS trajectory. They are Gaussian random variables
whose correlation functions were evaluated in Ref. 31. In the
current notation and with

σ 2 = kBT γ

|λs|(λu − λs)2
, (45)

they read, for t ≥ 0, as

〈s‡(t)s‡(0)〉α = σ 2eλst , (46a)

〈u‡(t)u‡(0)〉α = − λs

λu
σ 2e−λut , (46b)

〈u‡(t)s‡(0)〉α = 0, (46c)

〈s‡(t)u‡(0)〉α = 2λs

λu + λs
σ 2(e−λut − eλst ). (46d)
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To evaluate the corrections (43) to the reaction rate, we
need to calculate noise averages of the form 〈P(. . .)〉α , where
(. . .) indicates some expression in the functions u‡(t) and
s‡(t). We will therefore assume that the expression (. . .) can
be written as a function of finitely many random variables
z = (z1, . . . , zn) that follow a multidimensional Gaussian dis-
tribution with zero mean and covariance matrix �, i.e., the
matrix elements of � are σ ij = 〈zizj〉α . As the first component
we include the variable z1 = u‡(0), which plays a special role
because it occurs in the factor P in Eq. (44).

Using (23) and setting ρ = (λu − λs)2/kBT , we can write

〈P (. . .)〉α = 1√
(2π )n det �

∫
dnz e−zT�−1 z/2e−ρz2

1/2(. . .)

= 1√
(2π )n det �

∫
dnz e−zT(�−1+ρJ )z/2(. . .)

=
√

det �0

det �

1√
(2π )n det �0

∫
dnz e−zT�−1

0 z/2(. . .),

=
√

det �0

det �
〈. . .〉0 , (47)

where we have introduced the matrix

J =

⎛
⎜⎜⎜⎝

1 0 0 . . .

0 0 0 . . .

0 0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠

and we have used 〈. . . 〉0 to denote an average over a multidi-
mensional Gaussian distribution with the modified covariance
matrix �0 given by

�−1
0 = �−1 + ρJ.

From the observation

�J =

⎛
⎜⎜⎜⎝

σ11 0 . . . 0
σ21 0 0

...
. . .

...
σn1 0 . . . 0

⎞
⎟⎟⎟⎠

we obtain (�J)2 = σ 11�J. It is then easy to check that(
� − ρ

1 + ρσ11
�J�

)
(�−1 + ρJ ) = I,

the identity matrix. Therefore,

�0 = � − ρ

1 + ρσ11
�J�

= � + λu

λs
ρ�J�, (48)

where in the last step we have used the value given in Eq. (46)
for σ 11 = 〈u‡2(0)〉α .

Furthermore,

�0�
−1 = I − ρ

1 + ρσ11
�J

is a lower triangular matrix whose diagonal elements, except
for the (1, 1) element, are all equal to 1. This observation

makes it easy to evaluate

det �0

det �
= det

(
I − ρ

1 + ρσ11
�J

)

= 1 − ρσ11

1 + ρσ11

= − λu

λs
= λ2

u

ω2
b

, (49)

where Eq. (46) has again be used.
Substituting Eq. (49) in Eq. (47), we finally find

〈P (. . .)〉α = λu

ωb
〈. . .〉0. (50)

For the components of the modified covariance matrix (48)
we find

〈zizj 〉0 = 〈zizj 〉α + λu

λs
ρ〈u‡(0)zi〉α〈u‡(0)zj 〉α, (51)

which allows to obtain the moments of the distorted Gaus-
sian distribution once the moments of the original Gaussian
are known. In particular, 〈zizj〉0 = 〈zizj〉α if either zi or zj are
uncorrelated with u‡(0).

Once the second moments of the distorted Gaussian dis-
tribution, i.e., the matrix elements of �0, are known, Isserlis’
theorem43, 44 can be used to express higher order moments in
terms of second moments, e.g.,

〈z1z2z3z4〉0

= 〈z1z2〉0〈z3z4〉0 + 〈z1z3〉0〈z2z4〉0 + 〈z1z4〉0〈z2z3〉0.

This expression contains a sum over all possible pairings of
the four factors. Other even-order moments can be evaluated
in a similar way, and the odd-order moments are zero. In this
way, the modified averages of arbitrary polynomials can be
calculated.

The moments that will be required in the rate calculation
can be obtained from these results; they are

〈u‡(0)X(t)〉0

σ 2
= (1 − βu)(e−λut − eλst ), (52a)

〈X(t)X(t ′)〉0

σ 2
= (1 − βs)e

λs|t−t ′| − λs

λu
(1 − βu)e−λu|t−t ′|

+
(

1 − 2βs + λs

λu

)
e−λu(t+t ′)

+ (1 − βu)(e−λut+λst
′+e−λut

′+λst ), (52b)

with

βu = 2λu

λu + λs
, βs = 2λs

λu + λs
.
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C. Results for the one-dimensional potential

With the help of Eq. (50) the leading term in the trans-
mission factor (43a) can be evaluated, giving

κ0 = λu

ωb
. (53)

This is the famous Kramers result for the transmission
factor.17

The perturbation expansion is set up in such a way that
effectively the noise carries a factor of ε. The critical velocity
V

‡
0 is linear in the noise. If V

‡
1 is one order ε higher, it must

be quadratic in the noise, and V
‡

2 cubic. Consequently,

κ1 = − 1

kBT

λu

ωb
〈V ‡

0 V
‡

1 〉0 = 0

is a third-order moment of the noise and must vanish. Simi-
larly, all odd-order corrections to the transmission factor must
be zero. According to the fluctuation-dissipation theorem (9),
the noise carries a factor

√
kBT , so that a perturbative expan-

sion in powers of ε corresponds to an expansion in powers of√
kBT . By contrast, Eq. (42) is an expansion of the transmis-

sion factor in powers of kBT because it has only even-order
terms.

The simplest rate correction can therefore be obtained
from a quartic perturbation in the potential. We set c3 = 0,
which makes V

‡
1 = 0, and calculate the rate correction that

is linear in c4. Substituting Eqs. (23) and (37) into (43b), it is
found that

κ
c4
2 = c4(λu − λs)

kBT
Sτ [λu, 〈P u‡(0) X3(τ )〉α; 0]. (54)

The average over the noise can be brought inside the S func-
tional because the latter is shorthand notation for an integral.
The remaining moment can be evaluated as

〈P u‡(0) X3(τ )〉α = λu

ωb
〈u‡(0) X3(τ )〉0

= 3
λu

ωb
〈u‡(0) X(τ )〉0〈X2(τ )〉0. (55)

The modified correlation functions that are required here are
given in Eq. (52). Equation (55) can thus be rewritten as a sum
of exponentially decaying terms, for which the S functional in
Eq. (54) is easy to evaluate. This procedure yields

κ
c4
2 = − 3c4σ

4(λu − λs)2

4kBT ωbλu
= 3

4
c4kBT

γ 2

ω3
bλs(λu − λs)2

.

(56)

This result agrees with the perturbative correction given in
Refs. 26–28. It can be rewritten as

κ
c4
2

κ0
= − 3

4

c4 kBT

ω4
b

(
1 − μ2

1 + μ2

)2

(57)

in terms of the dimensionless parameter μ = κ0 = λu/ωb that
was used in Ref. 27.

A comparison of Eq. (56) with numerical results is shown
in Fig. 4. They confirm once more that the perturbative result
is correct. The figure also shows the second-order correction
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FIG. 4. Transmission factor, κ , for a one-dimensional potential with quartic
anharmonicity, c4, for ωb = 3, kBT = 1. (a) κ as a function of the coupling
strength c4 for a value of the damping γ = 7. (b) Difference between κ and
its Kramers approximation, κ0, as a function of γ for c4 = 2. Numerical
simulation results (red points), harmonic (Kramers) approximation (53) (gray
horizontal line), perturbative results to first-order, obtained from (53) + (56)
(green line), and second-order obtained from (53) + (56) + (58) (blue line).

in c4, which can be obtained in a similar way from Eq. (38).
It reads

κ
c4
4

κ0
= − 3

32

(
c4 kBT

ω4
b

)2 (
1 − μ2

1 + μ2

)4

× 105μ8 + 830μ6 + 1648μ4 + 770μ2 + 87

(1 − μ4)(3μ4 + 10μ2 + 3)
.

(58)

In the numerical example the second-order contribution is
small, but Fig. 4(b) shows clearly that the second-order per-
turbative result is in better agreement with the numerical data
than the first-order result.

For a generic anharmonic potential that has a third-order
term, the leading rate correction is quadratic in c3 and can be
obtained from Eq. (43c) with the help of Eqs. (35) and (36). It
reads

κ
c3
2

κ0
= − 1

6

c2
3 kBT

ω6
b

(
1 − μ2

1 + μ2

)2
10μ4 + 41μ2 + 10

2μ4 + 5μ2 + 2
. (59)

A comparison between Eq. (59) and numerical data is shown
in Fig. 5. Again, the agreement is excellent.

If both cubic and quartic perturbations are present in the
potential, then the second-order contribution to the Kramers’
transmission factor is equal to the sum of expressions
(57) and (59).
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FIG. 5. Transmission factor for a one-dimensional potential with cubic an-
harmonicity, c3, with ωb = 1, γ = 2, kBT = 1. Numerical simulation results
(red points), harmonic (Kramers) approximation (53) (gray horizontal line),
perturbative results to second-order, obtained from (53) + (59) (blue line).
Notice that in this case the first-order correction is zero.

VI. THE TWO-DIMENSIONAL CASE

So far, our discussion of the stochastic stable and un-
stable manifolds and their use has been restricted to a one-
dimensional model. Most problems of physical interest, how-
ever, have several degrees of freedom. It is therefore crucial
to show how the results obtained before can be generalized to
higher dimension. We will carry out the generalization to two
dimensions, which requires some extensions of the previous
discussion. It will then be obvious that these techniques can
equally be applied to systems in arbitrary dimension.

We study a two-dimensional model whose dynamics is
described by the Langevin equation (8). We denote the config-
uration space coordinates as q = (x, y) and the corresponding
velocities as q̇ = (vx, vy). The friction matrix � = γ I2 is as-
sumed to be a scalar multiple of the 2 × 2 identity matrix,
I2. By the fluctuation-dissipation theorem (9), this assumption
implies that the x and y components of the fluctuating force
are statistically uncorrelated. For demonstration purposes we
will use the anharmonic model potential

U (x, y) = − 1
2ω2

b x2 + 1
2ω2

y y2 + c x2y2 (60)

that has already been used in Refs. 32 and 33. The anharmonic
perturbation in Eq. (60) is of fourth order. In the terminology
of the previous sections, the coupling parameter c is therefore
of order ε2, and rate corrections at first order in c are expected.

A. Invariant manifolds in higher dimension

In a two-dimensional setting, the phase space of the
Langevin equation (8) is four-dimensional. It can be described
with coordinates (x, y, vx, vy). As before, the harmonic
approximation of the dynamics around the barrier can be di-
agonalized by introducing the coordinates u and s given in
Eq. (12) and coordinates z1 and z2 defined by

z1 = vy − λ2y

λ1 − λ2
, z2 = vy − λ1y

λ2 − λ1
(61)

with the inverse transformation

y = z1 + z2, vy = λ1z1 + λ2z2. (62)

The two additional eigenvalues

λ1,2 = − 1
2

(
γ ±

√
γ 2 − 4ω2

y

)
(63)

are either real and negative or form a pair of complex conju-
gates with negative real parts.

The fluctuating force has two independent components
ξ x, α(t) and ξ y, α(t), which determine the four components of
the TS trajectory

u‡(t) = 1

λu − λs
S[λu, ξx,α; t],

s‡(t) = − 1

λu − λs
S[λs, ξx,α; t],

z
‡
1(t) = 1

λ1 − λ2
S[λ1, ξy,α; t],

z
‡
2(t) = − 1

λ1 − λ2
S[λ2, ξy,α; t] (64)

that serves as a time-dependent coordinate origin. In the rela-
tive coordinates

�u = u − u‡, �s = s − s‡,

�z1 = z1 − z
‡
1, �z2 = z2 − z

‡
2 (65)

the Langevin equation is written as

�u̇ = λu�u + fx(x, y)

λu − λs
,

�ṡ = λs�s − fx(x, y)

λu − λs
,

�ż1 = λ1�z1 + fy(x, y)

λ1 − λ2
,

�ż2 = λ2�z2 − fy(x, y)

λ1 − λ2
, (66)

where fx and fy denote the anharmonic parts of the mean force:

− ∂U

∂x
= ω2

bx + fx(x, y),

− ∂U

∂y
= −ω2

yy + fy(x, y).

The differential equations (66) are coupled by the conditions

x = x‡ + �u + �s,

y = y‡ + �z1 + �z2.

As in the one-dimensional case, the equations of motion
(66) decouple and become time-independent in the harmonic
limit, fx = fy = 0, and the relevant phase space structures can
easily be described in this case. Among the eigenvalues in
Eq. (66), λu is positive, while the other three have nega-
tive real parts. Consequently, the TS trajectory has a one-
dimensional unstable manifold and a three-dimensional stable
manifold. The stable manifold separates reactive from non-
reactive regions of phase space. The dimension of the unstable
manifold, by contrast, is too low to separate distinct regions
in the four-dimensional phase space. The invariant manifolds
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cannot therefore be used to distinguish trajectories with dif-
ferent behaviors in the remote past, but the stable manifold
can be used to predict the fate of a trajectory in the future.
Thus, in arbitrary dimension the invariant manifolds provide
precisely the diagnostic capabilities that are needed for rate
calculations.

We are particularly interested in trajectories that start on
the DS x = 0. This is a three-dimensional surface with coor-
dinates (vx, y, vy), embedded in the four-dimensional phase
space. It intersects the three-dimensional stable manifold in
a two-dimensional surface that separates reactive from non-
reactive trajectories within the DS. We will call that two-
dimensional surface the separatrix, and it depends on the re-
alization of the noise.

On physical grounds, we expect a trajectory to be reactive
if its initial velocity vx is sufficiently high. The critical veloc-
ity V ‡ that separates reactive from non-reactive trajectories
depends, in general, on the transverse coordinates y and vy . In
the harmonic limit, the critical velocity is given by (23) and
is independent of these transverse coordinates. The separatrix
vx = V ‡ is therefore a plane within the DS that is parallel to
the y-vy plane. When anharmonicities are taken into account,
the separatrix is deformed from this plane in a stochastically
time-dependent way, as indicated schematically in Fig. 6(a).
Nevertheless, we will still be able to describe the separatrix
by specifying a critical velocity that depends on the trans-
verse coordinates. In Sec. VI B a perturbative expansion for
the function V ‡(y, vy) will be developed.

It is instructive to study the actual shape of the separa-
trix in a representative example. Figure 7 shows the critical
velocity as a function of transverse coordinates for one real-

FIG. 6. Schematic representation of the separatrix within the dividing sur-
face x = 0. For a harmonic barrier the separatrix is a plane (gray in both pan-
els). (a) For a weakly anharmonic barrier the separatrix can be parameterized
by a function V ‡(y, vy ). Trajectories with initial condition vx > V ‡(y, vy )
are reactive. (b) If anharmonicities are strong, the separatrix cannot be de-
scribed by a single critical velocity, V ‡.
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FIG. 7. Critical velocity as a function of the transverse coordinates for one
realization of the noise for the two-dimensional model potential (60) for
ωx = 1, ωy = 1.5, γ = 2, c = 0.2, kBT = 1. Contour spacing is 0.2 and
the central contour value is −3.2.

ization of the noise for the two-dimensional model potential
(60). The critical velocity takes a maximum that is notice-
ably displaced from the origin y = vy = 0. At the maximum,
the critical velocity is closest to its harmonic value, which
in this case is approximately −3.01. For all values of the
transverse coordinates, the critical velocity is below the har-
monic approximation value. Moreover, it decays steeply away
from the maximum, so that deviations from the harmonic ap-
proximation are large for most values of the coordinates. As
the critical velocity appears in the exponent in the rate for-
mula (40)—which will be generalized to higher dimension in
Eq. (73)—it is expected that anharmonic effects on the critical
velocity leads to large rate corrections.

If the barrier is strongly anharmonic it cannot be guar-
anteed, in general, that the separatrix can be parameterized
by the transverse coordinates y and vy . In a situation as that
indicated in Fig. 6(b), the separatrix is described by a mul-
tivalued function of the transverse coordinates. It cannot be
characterized by a single critical velocity. As expected, tra-
jectories at low vx are nonreactive, and those at somewhat
larger vx are reactive. However, at certain values of y and vy ,
there is an interval at yet higher vx that also contains nonreac-
tive trajectories. A scenario like this obviously requires very
strong anharmonic effects, and this can only be achieved for
large values of the transverse coordinates. But at these condi-
tions, it is doubtful whether a TST-like treatment with a sin-
gle rate-determining saddle point is appropriate at all. We will
therefore neglect this possibility and assume the existence of
a single critical velocity.

B. Determination of the stable manifold

As a basis for the perturbative expansion, we formally
solve the differential equations (66) in terms of S functionals
by

�u(t) = 1

λu − λs
S[λu, fx(x, y); t],

�s(t) = �s(0)eλst − 1

λu − λs
S̄[λs, fx(x, y); t],

�z1(t) = �z1(0)eλ1t + 1

λ1 − λ2
S̄[λ1, fy(x, y); t],
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�z2(t) = �z2(0)eλ2t − 1

λ1 − λ2
S̄[λ2, fy(x, y); t]. (67)

These integral equations are entirely analogous to Eqs. (24)
and (26), and they are coupled by

x = x‡ + �u + �s,

y = y‡ + �z1 + �z2.

A trajectory satisfying (67) automatically lies on the stable
manifold. To find the critical velocity, Eqs. (67) need to be
solved under the condition that the trajectory starts in the DS
x = 0 and at the prescribed transverse coordinates y(0) and
vy(0).

We will solve Eqs. (67) by an iterative procedure as in
(33). As before, the initial condition �s(0) must be adapted
in every step in order to enforce the condition x(0) = 0.
By contrast, the transverse initial conditions �z1(0) and
�z2(0) are fixed once and for all by imposing the condition
that

y(0) = y‡(0) + �z1(0) + �z2(0),

vy(0) = v‡
y(0) + λ1�z1(0) + λ2�z2(0)

take the desired values. The critical velocity is finally obtained
from Eq. (27).

Our perturbation expansion is centered around the har-
monic approximation to a trajectory on the stable manifold,
given by Eq. (29)

X(t) = x‡(t) − x‡(0)eλst

and

Y (t) = y‡(t) + �z1(0)eλ1t + �z2(0)eλ2t . (68)

The latter can be split according to

Y (t) = Yα(t) + Y⊥(t) (69)

into one part

Yα(t) = y‡(t) − z
‡
1(0)eλ1t − z

‡
2(0)eλ2t

that depends on the realization of the noise but not on the
initial conditions, and another

Y⊥(t) = z1(0)eλ1t + z2(0)eλ2t

that depends on the initial conditions but not on the noise.
We will now apply the general theory to the model po-

tential (60). Our aim is to expand the coordinates

x(t) = X(t) + c �x1(t) + c2�x2(t) + · · · ,
y(t) = Y (t) + c �y1(t) + c2�y2(t) + · · ·

in powers of the anharmonicity parameter c. For expansions
of other quantities, such as

V ‡ = V
‡

0 + cV
‡

1 + c2V
‡

2 + · · · ,
a similar notation will be used. The anharmonic forces are
given by

fx = − 2c xy2

= − 2c XY 2 − 2c2(Y 2�x1 + 2XY �y1) + · · · ,

fy = − 2c x2y

= − 2c X2Y − 2c2(2XY �x1 + X2�y1) + · · · .
In the first step of the iteration we find

�u1(t) = 1

λu − λs
S[λu, fx,1; t]

= − 2

λu − λs
S[λu, XY 2; t], (70)

where fx, n is the coefficient of fx of order cn. From Eq. (70)
we get

V
‡

1 = (λu − λs)�u1(0)

= − 2S[λu, XY 2; 0]. (71)

The remaining coordinates need only be calculated if the
second-order correction for the critical velocity is desired. We
then obtain

�s1(t) = −�u1(0)eλst + 2

λu − λs
S̄[λs, XY 2; t],

�z1(t) = − 2

λ1 − λ2
S̄[λ1, X

2Y ; t],

�z2(t) = + 2

λ1 − λ2
S̄[λ2, X

2Y ; t].

Finally, with the aid of

�x1 = �u1 + �s1,

�y1 = �z1 + �z2,

we can calculate

�u2(t) = 1

λu − λs
S[λu, fx,2; t].

The resulting expression reduces to

V
‡

2 =− 4 Sτ

[
λu,

Y 2(τ )

λu−λs

(
S[λu, XY 2; 0]eλsτ−S[λu, XY 2; τ ]

+ S̄[λs, XY 2; τ ]
) + 2

X(τ ) Y (τ )

λ1 − λ2

(
S̄[λ2, X

2Y ; τ ]

− S̄[λ1, X
2Y ; τ ]

)
; 0

]
. (72)

Figure 8 shows the value of the critical velocity for one real-
ization of the noise for the two-dimensional model potential
(60) as a function of the coupling strength, c, for the initial
condition y = 0, vy = 0. It is compared to perturbative re-
sults up to second order. As it can be seen, our perturbative
results agree very well with those obtained numerically, thus
showing the efficiency of our method. To further analyze the
performance of our method, we show in Fig. 9 the difference
between the numerically calculated critical velocity and the
value obtained with our perturbative expansions for differ-
ent values of the transverse coordinates, where it is clearly
seen that it sensibly reduces as the order of the perturbation is
increased.
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FIG. 8. Critical velocity for one realization of the noise for the two-
dimensional model potential (60) with ωx = 1, ωy = 1.5, γ = 2, kBT = 1, for
an initial condition y = 0, vy = 0. Numerical simulation results (red crosses),
harmonic approximation (23) (gray horizontal line), perturbative results to
first-order (23) + (71) (green straight line), and second-order (23) + (71)
+ (72) (blue line).

C. Reaction rate expressions

The simple expression (40) for the transmission coeffi-
cient in terms of the critical velocity can easily be general-
ized to higher dimension. To achieve this, we start again from
Eq. (7). Note first that in the denominator of Eq. (7) the av-
erage over the transverse coordinates has no effect since the
TST approximation to the characteristic function does not de-
pend on them. In the numerator, we use again the form (39)
of the characteristic function and carry out the average over
vx as before, to obtain

κ =
〈
exp

(
− V ‡2

2kBT

)〉
α⊥

. (73)

In this expression the average over the transverse coordinates,
which is indicated by subscript ⊥, cannot be carried out im-
mediately because the critical velocity depends on the trans-
verse coordinates.

Equation (73) represents the simplest conceivable gen-
eralization of Eq. (40). It is remarkable that no modifications,
beyond the additional average over the transverse coordinates,
are required. This is only possible because no anharmonic cor-
rections are required for the denominator in Eq. (7).

In the case of the model potential (60), the distribution
(4) of the transverse coordinates is given by

p⊥(y, vy) = 1

Z
exp

(
−v2

y + ω2
yy

2

2kBT

)
, (74)

i.e., it is a Gaussian distribution. The functions X and Y will
then both have a Gaussian distribution, which allows us to
evaluate the rate corrections by the method of Sec. V B. For
any expression involving u‡(0), X and Y, we write

〈P (. . .)〉α⊥ = λu

ωb
〈. . .〉0⊥ (75)

as in Eq. (50). The average over the initial conditions is not in-
volved in the transition from the noise average to the distorted
average with correlation function (51), because the noise and
the initial conditions are uncorrelated.

Once we have a perturbative expansion of the critical ve-
locity of the form (41), expressions (43) can be used for the
expansion of the transmission factor, the only required modifi-
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FIG. 9. Difference between numerically calculated critical velocity and per-
turbative expansions. Noise sequence and parameter values as in Fig. 7.
(a) Harmonic approximation. (b) First-order perturbation theory. (c) Second-
order perturbation theory. Contour spacing is 0.05 in (a), 0.005 in (b) and (c).
Note that the color scale is also stretched by a factor 10 in (a).

cation being to replace noise averages by averages over noise
and the transverse coordinates.

Assuming a general anharmonic potential of the form

U (0, y) = 1
2ω2

yy
2 + Uanh(y),

where Uanh(y) contains terms at least of third order in y, i.e.,
at least of first order in the expansion parameter ε, it can
be treated perturbatively in the current framework. The dis-
tribution function of the transverse coordinates can then be
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expanded as

p⊥(y, vy) = 1

Z
exp

(
−v2

y + ω2
yy

2

2kBT

)

×(1 + ε a1(y) + ε2 a2(y) + · · ·) (76)

with suitable coefficients ai that are polynomials in y of de-
gree at most i. We assume that the partition function Z in
Eq. (76) is the same as in the Gaussian distribution (74), and
any corrections to the partition function that arise from the
anharmonicity of the potential have been included in the ex-
pansion coefficients ai(y).

Using symbol � to denote an average over the Gaussian
distribution (74) of initial conditions, we can write

κ =
〈
exp

(
− V ‡2

2kBT

)〉
α⊥

=
〈
exp

(
− V ‡2

2kBT

)
× (1 + ε a1(y) + ε2 a2(y) + · · ·)

〉
α�

.

The expansion (41) of the critical velocity then allows us to
expand the exponential, thus obtaining

κ = κ0 + εκ1 + ε2κ2 + · · ·
with

κ0 = 〈P 〉α�, (77a)

κ1 = − 1

kBT
〈PV

‡
0 V

‡
1 〉α� + 〈P a1(y)〉α�, (77b)

κ2 = 1

2(kBT )2

〈
PV

‡2
0 V

‡2
1

〉
α� − 1

kBT
〈PV

‡
0 V

‡
2 〉α�

− 1

2kBT

〈
PV

‡2
1

〉
α�−

1

kBT
〈P V

‡
0 V

‡
1 a1(y)〉α�+〈P a2(y)〉α�,

(77c)

where again the abbreviation (44) has been used. The remain-
ing averages are Gaussian averages that can be evaluated, as
before, by first converting the noise average into a distorted
Gaussian average via (75), and then using Isserlis’ theorem.

Because the factor P is independent of the initial condi-
tions, we obtain from (77a)

κ0 = 〈P 〉α = λu

ωb
,

the Kramers result. Similarly, the expressions 〈P ai(y)〉α�,
that occur in all correction terms, can be simplified to

〈P ai(y)〉α� = 〈P 〉α 〈ai(y)〉� = λu

ωb
〈ai(y)〉� .

D. Correlation functions

To evaluate corrections to the transmission factor in
Eq. (77) using Isserlis’ theorem, the correlation functions
〈w1w2〉0�, where w1 and w2 are one of u‡(0), X(t), Y(t), and

y(0), are needed. (The initial condition y(0) was written with-
out its time argument in Sec. VI C. For the sake of clarity we
will now include it again.)

Because the x and y components of the fluctuating force
are uncorrelated, all correlation functions involving one of
either u‡(0) or X(t) and one of either Y(t) or y(0) must van-
ish. Furthermore, since u‡(0) and X(t) do not depend on initial
conditions,

〈u‡(0)X(t)〉0� = 〈u‡(0)X(t)〉0

and

〈X(t)X(t ′)〉0� = 〈X(t)X(t ′)〉0

are given by Eq. (52).
Concerning the initial conditions, it can be read off from

the distribution function (74) that

〈y(0)2〉0� = kBT

ω2
y

. (78)

(The average over the distorted noise distribution does not
have any effect.) We can also see that

〈vy(0)2〉0� = kBT and 〈y(0) vy(0)〉0� = 0. (79)

These results further yield

〈y(0) Y (t)〉0� = 〈y(0) Y⊥(t)〉0�

= 〈y(0)z1(0)〉0� eλ1t + 〈y(0)z2(0)〉0� eλ2t

= kBT

ω2
y(λ1 − λ2)

(λ1e
λ2t − λ2e

λ1t ). (80)

Finally, the autocorrelation function of Y(t) can be de-
composed, with the help of the split (69), into

〈Y (t)Y (t ′)〉0� = 〈Yα(t)Yα(t ′)〉α + 〈Y⊥(t)Y⊥(t ′)〉� (81)

because

〈Yα(t)Y⊥(t ′)〉0� = 〈Yα(t)〉0 〈Y⊥(t ′)〉⊥ = 0

and

〈Yα(t)Yα(t ′)〉0 = 〈Yα(t)Yα(t ′)〉α.

To evaluate the first term in Eq. (81), the correlation function
of the components z

‡
i (t) of the TS trajectory, given in Ref. 31,

are needed. The second term can be evaluated with the help of
Eqs. (78) and (79). Finally, one arrives to the following simple
result:

〈Y (t)Y (t ′)〉0� = kBT

ω2
y − λ2

1

eλ1|t−t ′| + kBT

ω2
y − λ2

2

eλ2|t−t ′|.

(82)
With that we have found all correlation functions that we will
need to calculate the rate corrections.

E. Rate corrections

Let us now derive an expansion of the transmission factor
for the case of the anharmonic model potential (60),

κ = κ0 + c κ1 + c2κ2 + · · · , (83)
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FIG. 10. Transmission factor for the two-dimensional model potential (60)
as a function of coupling strength, c, for ωb = 1, ωy = 0.5, kBT = 1,
γ = 1. Numerical simulation results (red points), harmonic (Kramers) ap-
proximation (53) (gray horizontal line), perturbative results to first-order, ob-
tained from (53) + (85) (green line), and second-order obtained from (53)
+ (85) + (86) (blue line).

in powers of the coupling parameter c. As discussed earlier,
this corresponds to an expansion in powers of ε2, and the rate
formulas (77) with ai(y) = 0 can be used.

The first correction term is

κ1 = − 1

kBT

λu

ωb
〈V ‡

0 V
‡

1 〉0�

= − 2

kBT

λu

ωb
(λu − λs) Sτ [λu, 〈u‡(0)X(τ )Y 2(τ )〉0�; 0].

(84)

The remaining average can be simplified to

〈u‡(0)X(τ )Y 2(τ )〉0� = 〈u‡(0)X(τ )〉0〈Y 2(τ )〉0�.

The results of Sec. VI D give a sum of exponentially decaying
terms for this expression, so that the S functional can be eval-
uated as in the one-dimensional case. In terms of the dimen-
sionless parameters μ = κ0 = λu/ωb, that was already used
above, and ν = ωy/ωb the rate correction reads

κ1 = − γ kBT

ω5
b

μ2

(1 + μ)2ν2
. (85)

The second-order correction can be obtained in a similar way.
After tedious calculations, one finally arrives at

κ2 = μ (kBT )2

6ω8
b

(
96(μ2−1)2

(μ2+1)2(μ2−4ν2 − 2)
− 6

(μ2+1)(ν2+1)

− 16

(2μ2+1)(3μ2+4ν2+6)
+9(μ2−1)(3μ4+8μ2+1)

(μ2+1)3ν4

+ 64μ8

(μ2 + 1)2(μ2 + 2)(μ4 − 2μ2(2ν2 + 1) − 8)

− 96(μ4 + 2μ2 − 1)μ6

(μ2 + 1)4(μ4 − 2μ2(2ν2 + 1) − 3)

+ 192μ6

(2μ6 + 7μ4 + 7μ2 + 2)(μ2(4ν2 + 6) + 3)

+2(16μ12−24μ10−139μ8−75μ6+77μ4+111μ2+34)

(μ2+1)4(2μ4+5μ2+2)ν2

)
.

(86)

A numerical example is shown in Fig. 10. The second-
order corrections to the transmission coefficient are small, so
that a large number of trajectories needs to be included in the
numerical calculation of the rate. Nevertheless, it is clear that
the perturbative expressions (85) and (86) describe the rate
correctly.

VII. CONCLUDING REMARKS

TST and related schemes have been widely used for rate
calculations for a long time. For reactions that occur in solu-
tion, recrossings of the DS pose a major difficulty in such
calculations. Many approaches try to overcome this prob-
lem by choosing the DS judiciously. By contrast, the method
developed here is insensitive to the choice of this surface. The
simplest choice of DS, which was taken here, also leads to the
simplest calculation of the critical velocity. The use of a dif-
ferent DS would require a redefinition of the critical velocity
to describe its intersection with the stable manifold, but this
can be achieved with only minor modifications to the iteration
procedure for the critical velocity. After that, any DS that lies
within the barrier region would give the same rate.

This independence of the DS is achieved by two cru-
cial features of our method. First, the dynamics are described
in phase space, rather than in configuration space, and mod-
ern geometric methods are used in our study. Second, we fo-
cus on invariant geometric structures that are determined by
the dynamics, rather than in structures, such as the DS, that
are arbitrarily imposed by the researcher. The present results
indicate that similar results apply to reactive systems that
are coupled to their environments, i.e., TST should focus on
invariant structures in phase space.

The focus of the present paper has been on analytic per-
turbation theory for the rate corrections on an anharmonic
barrier. The different steps of this calculation have different
levels of complexity. The critical velocity, which encodes the
location of the invariant manifold, is very simple to calcu-
late with the iteration scheme described here. Moreover, it can
easily be extended to higher orders. By contrast, the evalua-
tion of the averages that yield the rate corrections is laborious.
While straightforward in principle, it requires the calculation
of a large number of exponential integrals, something that,
even for some of the results presented here, is only feasible
with the help of a computer algebra system, Mathematica45

in our case.
The crucial step that sets the current method apart from

earlier algorithms is the calculation of the stable manifold and
the critical velocity. It is encouraging, therefore, that this most
important step of the calculation is also the easiest. This ob-
servation further suggests that to obtain an efficient algorithm
to compute rates, the calculation of the stable manifold should
be combined with numerical methods for the computation of
averages. We will report on such combinations in a forthcom-
ing publication.
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