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Role of short periodic orbits in quantum maps with continuous openings

Carlos A. Prado,1,2 Gabriel G. Carlo,3,* R. M. Benito,4 and F. Borondo5

1Comisión Nacional de Energía Atómica, Departamento de Física, Av. del Libertador 8250, 1429 Buenos Aires, Argentina
2Departamento de Física, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina

3Comisión Nacional de Energía Atómica, CONICET, Departamento de Física, Av. del Libertador 8250, 1429 Buenos Aires, Argentina
4Grupo de Sistemas Complejos and Departamento de Física, Escuela Técnica Superior de Ingenieros Agrónomos,

Universidad Politécnica de Madrid, 28040 Madrid, Spain
5Departamento de Química, and Instituto de Ciencias Matemáticas (ICMAT), Universidad Autónoma de Madrid,

Cantoblanco, 28049 Madrid, Spain

(Received 8 November 2017; revised manuscript received 1 March 2018; published 18 April 2018)

We apply a recently developed semiclassical theory of short periodic orbits to the continuously open
quantum tribaker map. In this paradigmatic system the trajectories are partially bounced back according to
continuous reflectivity functions. This is relevant in many situations that include optical microresonators and
more complicated boundary conditions. In a perturbative regime, the shortest periodic orbits belonging to the
classical repeller of the open map—a cantor set given by a region of exactly zero reflectivity—prove to be
extremely robust in supporting a set of long-lived resonances of the continuously open quantum maps. Moreover,
for steplike functions a significant reduction in the number needed is obtained, similarly to the completely open
situation. This happens despite a strong change in the spectral properties when compared to the discontinuous
reflectivity case. In order to give a more realistic interpretation of these results we compare with a Fresnel-type
reflectivity function.
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I. INTRODUCTION

In many experimental situations like in the case of optical
cavities [1–3], the knowledge of properties of an open system
becomes crucial. This is also a very interesting theoretical
problem, even from a pure mathematical point of view [4].
At the classical level, these situations are usually modeled by
eliminating all the trajectories that arrive at a given region of
phase space (the opening) giving rise to a fractal invariant
set, the repeller. The quantum analogs of these systems are
characterized by a set of resonances and the number of
long-lived states scales with the Planck constant as h̄−d/2,
where d + 1 is the fractal dimension of the classical repeller.
This is the so-called fractal Weyl law [5–8]. However, the
reflection mechanisms at the boundaries are usually more
complicated than this complete opening [9]. The first step in
order to understand these mechanisms is considering a constant
reflectivity R, meaning that the classical trajectories arriving
to the opening are partially reflected. In these cases we have
a multifractal behavior [10], and the usual fractal Weyl law
needs to be nontrivially modified. This has been done for the
case of maps [11], which are very suitable models for more
complicated systems.

There is another point of view to study this problem which is
based on the semiclassical theory of short periodic orbits (POs)
for open quantum maps [12]. The shortest POs contained in
the classical repeller are used to construct a basis set of scar
functions which expands the quantum repeller and is suitable to
express the quantum nonunitary operators [13–15]. Recently,
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we have extended the short POs theory to partially open
quantum maps where a fraction of the quantum probability
is reflected [16].

The next step for a better understanding of the properties
derived from more realistic reflection mechanisms at the
boundary [1] is to consider a reflectivity function. In this
paper we apply our semiclassical theory to a continuously open
tribaker map. Although we will drop the word “partially” from
here on in order to simplify the notation, this is obviously a
particular case of a partially open map. We take into account
a step function of the Fermi-Dirac kind in order to smooth the
boundaries of the opening, and a sinusoidal function which
provides with a more generic profile. We have found strong
changes in the spectral behavior with respect to the discontin-
uous openings. Despite this, the shortest POs belonging to the
classical repeller (corresponding to the fully open scenario)
explain the main properties of these maps, in a perturbative
regime (i.e., for low values of the reflectivity). Moreover, in
the step function case there is still a significant reduction in
the number of POs needed for the semiclassical calculations.
A physical interpretation in terms of the index of refraction of
microresonators is also given.

This paper is organized as follows: In Sec. II we make a
brief description of our semiclassical approach and define the
system used, i.e., the classical and quantum continuously open
tribaker map. In Sec. III we apply the short POs theory and
discuss the results. Our conclusions are presented in Sec. IV.

II. CONTINUOUSLY OPEN MAPS

Classical and quantum chaos have benefited from the
study of maps, which capture all the essential properties of
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more complicated dynamical systems [17–19]. Open maps
are transformations of the 2-torus where trajectories disappear
when they reach an open region in the bidimensional phase
space. The intersection of the forward and backwards trapped
sets (trajectories that do not escape either in the past or in
the future) form the repeller, an invariant of fractal dimension.
Partially open maps are those in which the opening does not
absorb all the trajectories that arrive at it but reflects back
a certain amount. Previously [16], we have investigated a
constant function given by a reflectivity R ∈ [0 : 1]. Here we
consider two different functions of the phase space, FR(q,p),
where now R is a parameter that performs the transition
between the minimum amount of reflection R = 0 (which is
not the completely open case) and the closed system (R = 1).
This is intended to capture the general properties of optical
microcavities and more complicated boundary conditions.

Multifractality manifests itself through a measure that now
is not uniformly distributed on the repeller. In each phase space
region Xi , this measure depends on the average intensity It

when t → ∞ of a number Nic of random initial conditions
taken inside Xi . The initial intensity is I0 = 1 for each
trajectory and changes to It+1 = FR(q,p)It each time it hits
the opening [20]. The finite time measure for Xi is given
by μb

t,i = 〈It,i〉/
∑

i〈It,i〉 where the average is over the initial
conditions in the given phase space region. If we consider this
to be the analog of the backwards trapped set of open maps,
we can evolve backwards and obtain μ

f

t,i the analog of the
forward trapped set. Their intersection gives what we call the
continuous repeller μt,i .

To quantize a map we impose boundary conditions for
both the position and momentum representations by taking
〈q + 1|ψ〉 = ei2πχq 〈q|ψ〉, and 〈p + 1|ψ〉 = ei2πχp 〈p|ψ〉,
with χq , χp ∈ [0,1). In a Hilbert space of finite dimension
N = (2πh̄)−1, the semiclassical limit corresponds to N → ∞,
and the propagator is given by a N × N matrix. Position and
momentum eigenstates are given by |qj 〉 = |(j + χq)/N〉 and
|pj 〉 = |(j + χp)/N〉 with j ∈ {0, . . . ,N − 1}. A discrete
Fourier transform gives 〈pk|qj 〉 = 1√

N
e−2iπ(j+χq )(k+χp)/N ≡

(G
χq,χp

N ). The opening (we take a strip parallel to the p axis)
is quantized as a projection operator P on its complement,
so the open map is of the general form Ũ = PUP , where
U is the propagator for the closed one. Here we take an
opening function so the projector becomes

√
FR × 1, where

the identity has the dimension of the escape region. This
map has N right eigenvectors |�R

j 〉 and N left ones 〈�L
j |,

which are mutually orthogonal 〈�L
j |�R

k 〉 = δjk , and that are
associated to resonances zj . Our normalization is such that
〈�R

j |�R
j 〉 = 〈�L

j |�L
j 〉.

A. Semiclassical theory

We have recently developed a semiclassical theory [16] that
can be directly applied to obtain the resonances of continuously
open maps by means of their shortest POs. We now give
a brief description of the main details. Let γ be a PO of
fundamental period L that belongs to a continuously open
map. We can define coherent states |qj ,pj 〉 associated to each
point of the orbit. We then construct L linear combinations
of them |φm

γ 〉 (m ∈ {0, . . . ,L − 1}). Finally, the right |ψR
γ,m〉

and left 〈ψL
γ,m| scar functions for the PO are defined through

the propagation of these linear combinations under the continu-
ously open map Ũ , up to approximately the system’s Ehrenfest
time τ . Normalization (N R,L

γ ) is chosen in such a way that
〈ψR

γ,m|ψR
γ,m〉 = 〈ψL

γ,m|ψL
γ,m〉 and 〈ψL

γ,m|ψR
γ,m〉 = 1.

We then select a number of POs, NPOs , from the whole
set up to a period L, in order to cover the continuous repeller.
In this work we use all POs up to period L that are inside the
repeller (of the fully open case). We also consider a few of them
that are outside, NoutPOs

max , having the greatest values of μ, and
optimized to provide with the most uniform covering possible
of the continuous repeller. We solve a generalized eigenvalue
problem in this basis set to obtain the semiclassical eigenstates
(for details see Ref. [16]).

B. The tribaker map

All calculations are preformed on the tribaker map

B(q,p) =

⎧⎪⎨⎪⎩
(3q,p/3) if 0 � q < 1/3

(3q − 1,[p + 1]/3) if 1/3 � q < 2/3

(3q − 2,[p + 2]/3) if 2/3 � q < 1

. (1)

This is an area-preserving, uniformly hyperbolic, piecewise-
linear, and invertible map with Lyapunov exponent λ = ln 3.
The opening region is the domain 1/3 < q < 2/3 of the
reflectivity function FR . We use two kinds of functions; in
the first place we consider

FR(q,p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − R)/{1 + exp[−A(q − B)]} + R

if q > 1/2

(1 − R)/(1 + exp{−A[(1 − q) − B]}) + R,

if q < 1/2

(2)

which is a step function of the Fermi-Dirac kind. We take
A = 120 and B = 0.63, which corresponds to approximately a
value 1 at q = 1/3 and q = 2/3 and a bottom at R in the middle
of the opening region. This function aims to smoothing the
transition between the closed and the open regions of the phase
space, but retaining at the same time some of the properties of
the discontinuous case, like the flat bottom and the quick drop
in reflectivity. The other function is given by

FR(q,p) = [(1 − R) cos(6πq) + (1 + R)]/2, (3)

which is essentially a sinusoid that matches a value 1 at the
boundaries of the opening and a minimum given by R. This
function is intended to capture the main properties of optical
setups like in microlasers experiments.

The quantum version of the tribaker map, UB uses the
discrete Fourier transform G

1/2,1/2
N with antiperiodic boundary

conditions (χq = χp = 1/2) to preserve time reversal and
parity. For the details of the position representation the trib-
aker map see Refs. [21,22]. The continuously open quantum
tribaker map is then given by means of the operator

P =

⎛⎜⎝1N/3 0 0

0
√

FR1N/3 0

0 0 1N/3

⎞⎟⎠, (4)

applied in such a way to preserve the original symmetries.
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FIG. 1. Classical measure μt,i on the 2-torus for the continuously
open tribaker map. In the upper panels we show the step opening, in
the lower ones the sinusoidal opening. In the left column R = 0.01,
and in the right one R = 0.1.

Figure 1 shows the finite time continuous repeller μt,i

at time t = 10. In the upper panels the step reflectivity is
represented, while in the lower ones we find the sinusoidal
case. In the left column R = 0.01, and in the right one R = 0.1.

III. RESULTS

In order to characterize the spectral behavior of contin-
uously open maps we have evaluated the local dimension
dloc = {ln[M(N )] − ln[M(N/3)]}/ ln(3); M(N ) is the number
of resonances satisfying |zj | > νc, and we have chosen N = 35

and N = 39. This is a convenient quantity that looks into the
details of the spectral scaling behavior [11]. We show the
results in Fig. 2 for R = 0, R = 0.001, R = 0.01, and R = 0.1
(see caption for details). It is clear that the marked oscillatory
behavior typical of the discontinuous opening [11] is almost
completely absent in our cases. This seems to be valid even
for the lowest R values and in the large N limit. This strong
change in the spectral features suggests that the resonances
follow a different kind of Weyl law (a different regime, at
least). Nevertheless, there is a small portion of them above
a given νc that approximately follows a scaling ruled by the
dimension of the repeller. For N = 35, we take νc = 0.81 for
the step reflectivity case and νc = 0.91 for the sinusoidal case.

Next, we apply the semiclassical theory to construct an
approximation to the continuously open quantum tribaker
map for N = 35, several values of R, and considering POs
up to period L = 7. A convenient quantum phase space
representation can be obtained by means of the symmetrical
operator ĥj [12] associated to the right |�R

j 〉 and left 〈�L
j |

long-lived semiclassical eigenstates, which are related to the

FIG. 2. Local dimension dloc behavior as a function of νc. (a)
Results for N = 35; (b) corresponding to N = 39. Thinner lines
represent the sinusoidal opening, and the thicker ones the step
opening. By using darker to lighter shades of gray (red, orange,
green, and yellow) we display the cases with R = 0, R = 0.001,
R = 0.01, andR = 0.1. The black horizontal line stands for the fractal
dimension of the repeller [i.e., ln(2)/ ln(3)].

eigenvalue zj :

ĥj =
∣∣�R

j

〉〈
�L

j

∣∣〈
�L

j

∣∣�R
j

〉 . (5)

We sum the first j of these projectors [15] (corresponding to the
eigenvalues with the greatest moduli, |zj | ≥ |zj ′ | with j � j ′)
up to νc:

Q̂j ≡
j∑

j ′=1

ĥj ′ . (6)

Their phase space representation by means of coherent states
|q,p〉 is given by

hj (q,p) = |〈q,p|ĥj |q,p〉|, (7)

Qj (q,p) = |〈q,p|Q̂j |q,p〉|. (8)

This is the semiclassical quantum continuous repeller Qsc
νc

.
In Fig. 3 we show the Qsc

νc
obtained by using just the POs

belonging to the repeller. The upper panels correspond to the
step reflectivity function and the lower ones to the sinusoidal
case. In the left column we have taken R = 0.01, while in
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FIG. 3. Semiclassical quantum continuous repeller Qsc
νc

over the
semiclassical long-lived resonances with eigenvalue moduli greater
than νc. Upper panels correspond to the step opening (νc = 0.81) and
lower ones to the sinusoidal opening (νc = 0.91). In the left column
R = 0.01, and in the right one R = 0.1.

the right one R = 0.1. The overlaps between these normal-
ized distributions with the ones obtained by using the exact
eigenstates, calculated as O = ∫∫

Qνc (q,p)Qsc
νc

(q,p) dq dp,
are greater than O = 0.99, in all cases.

Finally, and in order to examine the details of these
quantum continuous repellers, we calculate the performance
P [15], defined as the fraction of long-lived eigenvalues
semiclassically reproduced within an error given by ε =√

[Re(zex
i ) − Re(zsc

i )]2 + [Im(zex
i ) − Im(zsc

i )]2. In the latter
expression zex

i and zsc
i are the exact eigenvalues and those given

by the semiclassical theory, respectively. We consider only the
eigenvalues with modulus greater than νc. We calculate the
number of scar functions NSF as a fraction of N that are needed
in order to obtain as many semiclassical eigenvalues inside the
ε = 0.001 vicinity of the corresponding exact ones in order
to reach P � 0.8. The fraction NSF /N is a measure of the
morphology of the quantum continuous repeller. In fact, the
larger this number the more interconnected the POs belonging
to the open repeller are. In this sense, it quantifies the departure
from the completely open case.

In Fig. 4 we show the fraction NSF /N needed to reach
P � 0.8 as a function of R ∈ [0 : 0.1]. The upper and thinner
lines correspond to the sinusoidal opening, while the mainly
lower and thicker ones to the step opening. The blue (black)
lines with squares correspond to the case in which we only take
POs that belong to the repeller. The green (gray) lines with
circles display the results when taking into account a small
maximum number of POs outside of the repeller, NoutPO

max = 5.
There is no significant improvement in the calculations when
considering these POs, underlining the fact that the main role
is played by the repeller. It is also clear from Fig. 4 that the
step reflectivity function is able to keep the reduction in the

FIG. 4. Fraction of scar functions NSF /N needed to reach P =
0.8 as a function of the parameter R. The blue (black) lines with
squares correspond to the cases considering only POs inside the
repeller. Green (gray) lines with circles correspond to considering
N outPO

max = 5 outside of it. Thinner lines represent the sinusoidal
opening, while the thicker ones the step case.

number of POs needed that is typical in the discontinuous
openings [16]. This is not the case for the sinusoidal function,
though the spectral behavior seems to be qualitatively similar
in the sense that only small oscillations coming form the
multifractal sampling are present [11]. It is interesting to notice
that there is no important change that can be appreciated
either in the classical and quantum continuous repellers or
in the dloc behavior, between R = 0.01 and R = 0.1 in the
sinusoidal opening; on the other hand the step opening shows
clear differences.

In order to be more precise about the different behavior of
these two reflectivity functions in terms of the number of scar
functions needed to obtain the semiclassical resonances, we
have studied the performance of our theory for different values
of the parameter A of the step function. We have compared
this with the performance of the sinusoidal reflectivity; in both
cases we have taken R = 0 and considered only POs inside
the repeller. From Fig. 5, the effect of varying A from 60 to
120 becomes clear (we have also adjusted B in order to keep
the opening approximately between 1/3 and 2/3). The step
function goes from a shape that is similar to the sinusoidal
opening to one that resembles the discontinuous one [see
Figs. 5(a) and 5(b), respectively]. In this transition the fraction
of scar functions needed decreases from approximately the
one corresponding to the sinusoidal opening to a much lower
one. In conclusion, the reason for the difference seen in Fig. 4
can now been understood: the system is much more closed
for the sinusoidal opening than for the step function case
with the original value for A. As a result more of the chaotic
saddle survives in the long-lived states, and more information
is needed to reconstruct them from a semiclassical basis. But by
just varying A the step function can be turned into a reflectivity
shape that needs the same additional information.

Though our theoretical model is very useful to isolate the
effect of just smoothing out the borders of the opening regions
and then compare it with a more generic sinusoidal reflectivity
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FIG. 5. Fraction of scar functions NSF /N needed to reach P =
0.8 as a function of the parameter A of the step reflectivity func-
tion. The blue (black) lines with squares correspond to the cases
considering only POs inside the repeller and R = 0. The green (gray)
horizontal line represents the performance for the sinusoidal opening.
We compare the shape of the step functions for A = 60 and A = 120
with the sinusoidal FR in (a) and (b), respectively.

function, a clear link with their physical meaning is in order.
For that purpose we have calculated the behavior of a Fresnel
type reflectivity function, proposed in Ref. [23] as a way to
take into account the partial escape at dielectric interfaces in
microcavities. For TM polarization our reflectivity function is
given by

Fn(q,p) =
(√

1 − {n sin[y(q)]}2 − n cos[y(q)]√
1 − {n sin[y(q)]}2 + n cos[y(q)]

)2

, (9)

FIG. 6. Fraction of scar functions NSF /N needed to reach P =
0.8 as a function of the index of refraction n of the microresonator.
The red (dark gray) dotted line with squares correspond to considering
only POs inside the repeller. In inset (a) we compare the shape of the
Fresnel reflectivity for n = 1.1 [red (dark gray) dotted line] with the
step [blue (black) line] and sinusoidal [green (gray) line] functions
for R = 0. In inset (b) the same is done for n = 1.9 and R = 0.1.

where y(q) = 3 arcsin(1/n)(2q − 1), and n is the index of
refraction of the microresonator. We notice that the opening
region is the same as in the previous cases, i.e., the middle third
of the tribaker map, and not the one given by the critical angle
of total internal reflection. This is because the tribaker map is
a good model to generate a chaotic saddle but if opened in one
of its thirds; when the opening is larger than this the remaining
repeller vanishes quickly. We have considered n ∈ [1.1,1.9]
and calculated the fraction of scar functions needed in our
semiclassical theory, results which are displayed in Fig. 6.

In this range, the main parameter of the step and sinusoidal
reflectivity functions, i.e., R, can be directly associated to the
index of refraction n (A and B are just to control the degree
of smoothing of the sharp borders of the opening for the step
function). In fact, the behavior of the Fresnel reflectivity is very
similar to that of the step function seen in Fig. 4. This study also
reveals that not only the width of the opening is relevant, but
also its depth. As a matter of fact, if we look at Figs. 6(a) and
6(b) it becomes clear that the bottom of the three reflectivities
almost coincides.

IV. CONCLUSIONS

We have applied the recently developed short POs theory for
partially open quantum maps to the case where the reflectivity
function is continuous on the phase space. This situation
is relevant for actual experiments with microresonators like
those used to produce microlasers [3]. In particular, recent
developments in this area show that boundary conditions can
be highly non trivial [1], and this of course impacts on many
properties.

By considering a Fermi-Dirac-type step function we have
tried to capture the essential features of continuity versus
discontinuity, smoothing the sharp borders at the opening. On
the other hand, we have also used a sinusoidal function that
models more generic situations. A parameter R allows us to
control the degree of reflectivity by determining the bottom of
these functions. In both cases the spectral properties change
with respect to the discontinuous opening. The typical strong
oscillations in the scaling of the number of resonances as a
function of the eigenvalue moduli above a given threshold νc

are almost completely lost, even for the lowest values of the
parameter R. This suggest that a different Weyl law (or regime)
should be investigated for these cases.

Nevertheless and quite surprisingly, our semiclassical the-
ory revealed that the role played by the shortest POs that belong
to the completely open repeller is very robust, at least for
R < 0.1 and N = 35, where we have made our calculations.
These orbits give the fundamental structure on which the
quantum continuous repeller is constructed. This is underlined
by the fact that including a few POs outside of it does not
significantly change the picture. Moreover, in the case of the
step opening we are able to use a relatively small amount of
POs inside the perturbative region. We notice that the step
reflectivity function corresponds to a grater opening than that
of the cosine one. In fact, if we change the value of the
parameter A the amount of scar functions needed grows and
can reach the one needed for the sinusoidal reflectivity. Finally,
the parameter R that controls the bottom of both reflectivity
functions has a very direct correspondence with the index of
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refraction of microresonators. If we consider a Fresnel type of
reflectivity we obtain a very similar behavior to that of the step
function in the perturbative region. This region corresponds to
a low to medium index microstadium according to Ref. [23].
Our studies have also revealed that not only the size of the
opening but also its depth are relevant for the semiclassical
behavior.

These findings could lead to new experiments in order to
detect this structure, and also to optimize the cavity design. In
the future we plan to use this insight on the morphology of the

eigenfunctions to find the scaling of the spectra and the reasons
behind it.
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