2,174 research outputs found

    Embodied stress: The physiological resonance of psychosocial stress

    Get PDF
    Psychosocial stress is a ubiquitous phenomenon in our society. While acute stress responses are necessary and adaptive, excessive activation of neurobiological stress systems can predispose an individual to far-reaching adverse health outcomes. Living in a complex social environment, experiencing stress is not limited to challenges humans face individually. Possibly linked with our capacity for empathy, we also display the tendency to physiologically resonate with others’ stress responses. This recently identified source of stress raises many interesting questions. In comparison to the wealth of studies that have advanced our understanding of sharing others’ affective states, the physiological resonance of stress has only recently begun to be more closely investigated. The aim of the current paper is to review the existing literature surrounding the emerging area of “stress contagion”, “empathic stress” or “stress resonance”, as it has been variably called. After a brief introduction of the concepts of stress and empathy, we discuss several key studies that paved the way for the merging of empathy with the concept of physiological resonance. We then delineate recent empirical studies specifically focusing on the physiological resonance of stress. In the final section of this review, we highlight differences between these studies and discuss the variability in terminology used for what seems to be the same phenomenon. Lastly, potential health implications of chronic empathic stress are presented and possible mechanisms of physiological stress transmission are discussed

    The Barometer

    Get PDF

    The Barometer---Readers Comments

    Get PDF

    The Barometer

    Get PDF
    The Need To Be More Professional: Whatever That Mean

    The Barometer

    Get PDF
    The Need To Be More Professional: Whatever That Mean

    Mid - infrared interferometry of massive young stellar objects II Evidence for a circumstellar disk surrounding the Kleinmann - Wright object

    Full text link
    The formation scenario for massive stars is still under discussion. To further constrain current theories, it is vital to spatially resolve the structures from which material accretes onto massive young stellar objects (MYSOs). Due to the small angular extent of MYSOs, one needs to overcome the limitations of conventional thermal infrared imaging, regarding spatial resolution, in order to get observational access to the inner structure of these objects.We employed mid - infrared interferometry, using the MIDI instrument on the ESO /VLTI, to investigate the Kleinmann - Wright Object, a massive young stellar object previously identified as a Herbig Be star precursor. Dispersed visibility curves in the N- band (8 - 13 {\mu}m) have been obtained at 5 interferometric baselines. We show that the mid - infrared emission region is resolved. A qualitative analysis of the data indicates a non - rotationally symmetric structure, e.g. the projection of an inclined disk. We employed extensive radiative transfer simulations based on spectral energy distribution fitting. Since SED - only fitting usually yields degenerate results, we first employed a statistical analysis of the parameters provided by the radiative transfer models. In addition, we compared the ten best - fitting self - consistent models to the interferometric observations. Our analysis of the Kleinmann - Wright Object suggests the existence of a circumstellar disk of 0.1M\odot at an intermediate inclination of 76\circ, while an additional dusty envelope is not necessary for fitting the data. Furthermore, we demonstrate that the combination of IR interferometry with radiative transfer simulations has the potential to resolve ambiguities arising from the analysis of spectral energy distributions alone.Comment: 12 pages, 22 figures accepted for publication in A&

    Dissecting Massive YSOs with Mid-Infrared Interferometry

    Full text link
    The very inner structure of massive YSOs is difficult to trace. With conventional observational methods we often identify structures still several hundreds of AU in size. But we also need information about the innermost regions where the actual mass transfer onto the forming high-mass star occurs. An innovative way to probe these scales is to utilise mid-infrared interferometry. Here, we present first results of our MIDI GTO programme at the VLTI. We observed 10 well-known massive YSOs down to scales of 20 mas. We clearly resolve these objects which results in low visibilities and sizes in the order of 30 - 50 mas. Thus, with MIDI we can for the first time quantify the extent of the thermal emission from the warm circumstellar dust and thus calibrate existing concepts regarding the compactness of such emission in the pre-UCHII region phase. Special emphasis will be given to the BN-type object M8E-IR where our modelling is most advanced and where there is indirect evidence for a strongly bloated central star.Comment: 8 pages, 6 figures, proceedings contribution for the conference "Massive Star Formation: Observations confront Theory", held in September 2007 in Heidelberg, Germany; to appear in ASP Conf. Ser. 387, H. Beuther et al. (eds.

    Far-infrared photometric observations of the outer planets and satellites with Herschel-PACS

    Full text link
    We present all Herschel PACS photometer observations of Mars, Saturn, Uranus, Neptune, Callisto, Ganymede, and Titan. All measurements were carefully inspected for quality problems, were reduced in a (semi-)standard way, and were calibrated. The derived flux densities are tied to the standard PACS photometer response calibration, which is based on repeated measurements of five fiducial stars. The overall absolute flux uncertainty is dominated by the estimated 5% model uncertainty of the stellar models in the PACS wavelength range between 60 and 210 micron. A comparison with the corresponding planet and satellite models shows excellent agreement for Uranus, Neptune, and Titan, well within the specified 5%. Callisto is brighter than our model predictions by about 4-8%, Ganymede by about 14-21%. We discuss possible reasons for the model offsets. The measurements of these very bright point-like sources, together with observations of stars and asteroids, show the high reliability of the PACS photometer observations and the linear behavior of the PACS bolometer source fluxes over more than four orders of magnitude (from mJy levels up to more than 1000 Jy). Our results show the great potential of using the observed solar system targets for cross-calibration purposes with other ground-based, airborne, and space-based instruments and projects. At the same time, the PACS results will lead to improved model solutions for future calibration applications.Comment: 25 pages, 11 figures, 11 table

    Hierarchical fragmentation and collapse signatures in a high-mass starless region

    Full text link
    Aims: Understanding the fragmentation and collapse properties of the dense gas during the onset of high-mass star formation. Methods: We observed the massive (~800M_sun) starless gas clump IRDC18310-4 with the Plateau de Bure Interferometer (PdBI) at sub-arcsecond resolution in the 1.07mm continuum andN2H+(3-2) line emission. Results: Zooming from a single-dish low-resolution map to previous 3mm PdBI data, and now the new 1.07mm continuum observations, the sub-structures hierarchically fragment on the increasingly smaller spatial scales. While the fragment separations may still be roughly consistent with pure thermal Jeans fragmentation, the derived core masses are almost two orders of magnitude larger than the typical Jeans mass at the given densities and temperatures. However, the data can be reconciled with models using non-homogeneous initial density structures, turbulence and/or magnetic fields. While most sub-cores remain (far-)infrared dark even at 70mum, we identify weak 70mum emission toward one core with a comparably low luminosity of ~16L_sun, re-enforcing the general youth of the region. The spectral line data always exhibit multiple spectral components toward each core with comparably small line widths for the individual components (in the 0.3 to 1.0km/s regime). Based on single-dish C18O(2-1) data we estimate a low virial-to-gas-mass ratio <=0.25. We discuss that the likely origin of these spectral properties may be the global collapse of the original gas clump that results in multiple spectral components along each line of sight. Even within this dynamic picture the individual collapsing gas cores appear to have very low levels of internal turbulence.Comment: 8 pages, 4 figures, A&A in pres
    • …
    corecore