1,609 research outputs found

    Dynamics of 8CB confined into porous silicon probed by incoherent neutron backscattering experiments

    Full text link
    Confinement in the nanochannels of porous silicon strongly affects the phase behavior of the archetype liquid-crystal 4-n-octyl-4-cyanobiphenyl (8CB). A very striking phenom- enon is the development of a short-range smectic order, which occurs on a very broad temperature range. It suggests in this case that quenched disorder effects add to usual finite size and surface interaction effects. We have monitored the temperature variation of the molecular dynamics of the confined fluid by incoherent quasielastic neutron scat- tering. A strongly reduced mobility is observed at the highest temperatures in the liquid phase, which suggests that the interfacial molecular dynamics is strongly hindered. A continuously increasing slowdown appears on cooling together with a progressive growth of the static correlation lengt

    Rich polymorphism of a rod-like liquid crystal (8CB) confined in two types of unidirectional nanopores

    Get PDF
    We present a neutron and X-rays scattering study of the phase transitions of 4-n-octyl-4'-cyanobiphenyl (8CB) confined in unidirectional nanopores of porous alumina and porous silicon (PSi) membranes with an average diameter of 30 nm. Spatial confinement reveals a rich polymorphism, with at least four different low temperature phases in addition to the smectic A phase. The structural study as a function of thermal treatments and conditions of spatial confinement allows us to get insights into the formation of these phases and their relative stability. It gives the first description of the complete phase behavior of 8CB confined in PSi and provides a direct comparison with results obtained in bulk conditions and in similar geometric conditions of confinement but with reduced quenched disorder effects using alumina anopore membranesComment: Accepted in EPJ E - Soft Matte

    Tracking the phase-transition energy in disassembly of hot nuclei

    Full text link
    In efforts to determine phase transitions in the disintegration of highly excited heavy nuclei, a popular practice is to parametrise the yields of isotopes as a function of temperature in the form Y(z)=z−τf(zσ(T−T0))Y(z)=z^{-\tau}f(z^{\sigma}(T-T_0)), where Y(z)Y(z)'s are the measured yields and τ,σ\tau, \sigma and T0T_0 are fitted to the yields. Here T0T_0 would be interpreted as the phase transition temperature. For finite systems such as those obtained in nuclear collisions, this parametrisation is only approximate and hence allows for extraction of T0T_0 in more than one way. In this work we look in detail at how values of T0T_0 differ, depending on methods of extraction. It should be mentioned that for finite systems, this approximate parametrisation works not only at the critical point, but also for first order phase transitions (at least in some models). Thus the approximate fit is no guarantee that one is seeing a critical phenomenon. A different but more conventional search for the nuclear phase transition would look for a maximum in the specific heat as a function of temperature T2T_2. In this case T2T_2 is interpreted as the phase transition temperature. Ideally T0T_0 and T2T_2 would coincide. We invesigate this possibility, both in theory and from the ISiS data, performing both canonical (TT) and microcanonical (e=E∗/Ae=E^*/A) calculations. Although more than one value of T0T_0 can be extracted from the approximate parmetrisation, the work here points to the best value from among the choices. Several interesting results, seen in theoretical calculations, are borne out in experiment.Comment: Revtex, 10 pages including 8 figures and 2 table

    Interplay of initial deformation and Coulomb proximity on nuclear decay

    Full text link
    Alpha particles emitted from an excited projectile-like fragment (PLF*) formed in a peripheral collision of two intermediate-energy heavy ions exhibit a strong preference for emission towards the target-like fragment (TLF). The interplay of the initial deformation of the PLF* caused by the reaction, Coulomb proximity, and the rotation of the PLF* results in the observed anisotropic angular distribution. Changes in the shape of the angular distribution with excitation energy are interpreted as being the result of forming more elongated initial geometries in the more peripheral collisions.Comment: 4 figure

    Molecular dynamics of glycerol and glycerol-trehalose bioprotectant solutions nanoconfined in porous silicon

    Full text link
    Glycerol and trehalose-glycerol binary solutions are glass-forming liquids with remarkable bioprotectant properties. Incoherent quasielastic neutron scattering (QENS) is used to reveal the different effects of nanoconfinement and addition of trehalose on the molecular dynamics in the normal liquid and supercooled liquid phases, on a nanosecond timescale. Confinement has been realized in straight channels of diameter D=8 nm formed by porous silicon. It leads to a faster and more inhomogeneous relaxation dynamics deep in the liquid phase. This confinement effect remains at lower temperature where it affects the glassy dynamics. The glass transitions of the confined systems are shifted to low temperature with respect to the bulk ones. Adding trehalose tends to slow down the overall glassy dynamics and increases the non-exponential character of the structural relaxation. Unprecedented results are obtained for the binary bioprotectant solution, which exhibits an extremely non-Debye relaxation dynamics as a result of the combination of the effects of confinement and mixing of two constituents

    Thermally-induced expansion in the 8 GeV/c π−\pi^- + 197^{197}Au reaction

    Full text link
    Fragment kinetic energy spectra for reactions induced by 8.0 GeV/c π−\rm{\pi^-} beams incident on a 197\rm{^{197}}Au target have been analyzed in order to deduce the possible existence and influence of thermal expansion. The average fragment kinetic energies are observed to increase systematically with fragment charge but are nearly independent of excitation energy. Comparison of the data with statistical multifragmentation models indicates the onset of extra collective thermal expansion near an excitation energy of E*/A ≈\rm{\approx} 5 MeV. However, this effect is weak relative to the radial expansion observed in heavy-ion-induced reactions, consistent with the interpretation that the latter expansion may be driven primarily by dynamical effects such as compression/decompression.Comment: 12 pages including 4 postscript figure

    Excitation and decay of projectile-like fragments formed in dissipative peripheral collisions at intermediate energies

    Full text link
    Projectile-like fragments (PLF:15<=Z<=46) formed in peripheral and mid-peripheral collisions of 114Cd projectiles with 92Mo nuclei at E/A=50 MeV have been detected at very forward angles, 2.1 deg.<=theta_lab<=4.2 deg. Calorimetric analysis of the charged particles observed in coincidence with the PLF reveals that the excitation of the primary PLF is strongly related to its velocity damping. Furthermore, for a given V_PLF*, its excitation is not related to its size, Z_PLF*. For the largest velocity damping, the excitation energy attained is large, approximately commensurate with a system at the limiting temperatureComment: 5 pages, 6 figure
    • 

    corecore