168 research outputs found

    Technical Evaluation of the Carolo-Cup 2014 - A Competition for Self-Driving Miniature Cars

    Get PDF
    The Carolo-Cup competition conducted for the eighth time this year, is an international student competition focusing on autonomous driving scenarios implemented on 1:10 scale car models. Three practical sub-competitions have to be realized in this context and represent a complex, interdisciplinary challenge. Hence, students have to cope with all core topics like mechanical development, electronic design, and programming as addressed usually by robotic applications. In this paper we introduce the competition challenges in detail and evaluate the results of all 13 participating teams from the 2014 competition. For this purpose, we analyze technical as well as non-technical configurations of each student group and derive best practices, lessons learned, and criteria as a precondition for a successful participation. Due to the comprehensive orientation of the Carolo-Cup, this knowledge can be applied on comparable projects and related competitions as well

    Transferability and reproducibility of exposed air-liquid interface co-culture lung models

    Get PDF
    Background The establishment of reliable and robust in vitro models for hazard assessment, a prerequisite for moving away from animal testing, requires the evaluation of model transferability and reproducibility. Lung models that can be exposed via the air, by means of an air-liquid interface (ALI) are promising in vitro models for evaluating the safety of nanomaterials (NMs) after inhalation exposure. We performed an inter-laboratory comparison study to evaluate the transferability and reproducibility of a lung model consisting of the human bronchial cell line Calu-3 as a monoculture and, to increase the physiologic relevance of the model, also as a co-culture with macrophages (either derived from the THP-1 monocyte cell line or from human blood monocytes). The lung model was exposed to NMs using the VITROCELL® Cloud12 system at physiologically relevant dose levels. Results Overall, the results of the 7 participating laboratories are quite similar. After exposing Calu-3 alone and Calu-3 co-cultures with macrophages, no effects of lipopolysaccharide (LPS), quartz (DQ12) or titanium dioxide (TiO2) NM-105 particles on the cell viability and barrier integrity were detected. LPS exposure induced moderate cytokine release in the Calu-3 monoculture, albeit not statistically significant in most labs. In the co-culture models, most laboratories showed that LPS can significantly induce cytokine release (IL-6, IL-8 and TNF-α). The exposure to quartz and TiO2 particles did not induce a statistically significant increase in cytokine release in both cell models probably due to our relatively low deposited doses, which were inspired by in vivo dose levels. The intra- and inter-laboratory comparison study indicated acceptable interlaboratory variation for cell viability/toxicity (WST-1, LDH) and transepithelial electrical resistance, and relatively high inter-laboratory variation for cytokine production. Conclusion The transferability and reproducibility of a lung co-culture model and its exposure to aerosolized particles at the ALI were evaluated and recommendations were provided for performing inter-laboratory comparison studies. Although the results are promising, optimizations of the lung model (including more sensitive read-outs) and/or selection of higher deposited doses are needed to enhance its predictive value before it may be taken further towards a possible OECD guideline

    Concern-driven integrated approaches to nanomaterial testing and assessment - report of the NanoSafety Cluster Working Group

    Get PDF
    Abstract Bringing together topic-related European Union (EU)-funded projects, the so-called "NanoSafety Cluster" aims at identifying key areas for further research on risk assessment procedures for nanomaterials (NM). The outcome of NanoSafety Cluster Working Group 10, this commentary presents a vision for concern-driven integrated approaches for the (eco-)toxicological testing and assessment (IATA) of NM. Such approaches should start out by determining concerns, i.e., specific information needs for a given NM based on realistic exposure scenarios. Recognised concerns can be addressed in a set of tiers using standardised protocols for NM preparation and testing. Tier 1 includes determining physico-chemical properties, non-testing (e.g., structure-activity relationships) and evaluating existing data. In tier 2, a limited set of in vitro and in vivo tests are performed that can either indicate that the risk of the specific concern is sufficiently known or indicate the need for further testing, including details for such testing. Ecotoxicological testing begins with representative test organisms followed by complex test systems. After each tier, it is evaluated whether the information gained permits assessing the safety of the NM so that further testing can be waived. By effectively exploiting all available information, IATA allow accelerating the risk assessment process and reducing testing costs and animal use (in line with the 3Rs principle implemented in EU Directive 2010/63/EU). Combining material properties, exposure, biokinetics and hazard data, information gained with IATA can be used to recognise groups of NM based upon similar modes of action. Grouping of substances in return should form integral part of the IATA themselves

    State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology.

    Get PDF
    Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing

    Tractable Fragments of Temporal Sequences of Topological Information

    Full text link
    In this paper, we focus on qualitative temporal sequences of topological information. We firstly consider the context of topological temporal sequences of length greater than 3 describing the evolution of regions at consecutive time points. We show that there is no Cartesian subclass containing all the basic relations and the universal relation for which the algebraic closure decides satisfiability. However, we identify some tractable subclasses, by giving up the relations containing the non-tangential proper part relation and not containing the tangential proper part relation. We then formalize an alternative semantics for temporal sequences. We place ourselves in the context of the topological temporal sequences describing the evolution of regions on a partition of time (i.e. an alternation of instants and intervals). In this context, we identify large tractable fragments

    Genotoksičnost metalnih nanočestica: osvrt na podatke istraživanja In vivo

    Get PDF
    With increasing production and application of a variety of nanomaterials (NMs), research on their cytotoxic and genotoxic potential grows, as the exposure to these nano-sized materials may potentially result in adverse health effects. In large part, indications for potential DNA damaging effects of nanoparticles (NPs) originate from inconsistent in vitro studies. To clarify these effects, the implementation of in vivo studies has been emphasised. This paper summarises study results of genotoxic effects of NPs, which are available in the recent literature. They provide indications that some NP types cause both DNA strand breaks and chromosomal damages in experimental animals. Their genotoxic effects, however, do not depend only on particle size, surface modifi cation (particle coating), and exposure route, but also on exposure duration. Currently available animal studies may suggest differing mechanisms (depending on the duration of exposure) by which living organisms react to NP contact. Nevertheless, due to considerable inconsistencies in the recent literature and the lack of standardised test methods - a reliable hazard assessment of NMs is still limited. Therefore, international organisations (e.g. NIOSH) suggest utmost caution when potential exposure of humans to NMs occurs, as long as evidence of their toxicological and genotoxic effect(s) is limited.S povećanjem proizvodnje i primjene niza različitih nanomaterijala (NM) raste i potreba istraživanja njihovih mogućih citotoksičnih i genotoksičnih učinaka kao i drugih štetnih učinaka na zdravlje u uvjetima profesionalne ili opće izloženost ljudi. Indikacije potencijanog oštećenja DNA kojeg uzrokuju nanočestice u velikoj mjeri proizlaze iz nedosljednih in vitro ispitivanja. Kako bi se razjasnili ti učinci, naglašena je potreba provedbe in vivo ispitivanja. Ovaj pregledni rad sažima rezultate procjene genotoksičnih učinaka nanočestica koji su objavljeni u novijoj stručnoj i znanstvenoj literaturi. Navedeni rezultati pokazuju da određene nanočestice uzrokuju lomove u molekuli DNA i oštećuju kromosome u eksperimentalnim životinjama. Njihovi genotoksični učinci ne ovise samo o veličini čestice, modifi kaciji površine (oblaganje čestice) i načinu izlaganja, već i o trajanju izloženosti nanočesticama. Postojeća istraživanja provedena na životinjama upućuju na različite mehanizme koji ovise o trajanju izlaganja i pomoću kojih živi organizmi reagiraju na doticaj s nanočesticama. Međutim postoje brojne nedosljednosti u novijoj literaturi, a standardne testne metode nisu dostupne pa je stoga pouzdanija procjena opasnosti od izlaganja nanomaterijalima u ljudi još uvijek veoma ograničena. Stoga se u međunarodnim dokumentima savjetuje oprez prilikom svakog izlaganja ljudi nanomaterijalima kako bi se spriječili mogući opći toksični genotoksični učinci
    corecore