1,817 research outputs found

    Braking the Gas in the beta Pictoris Disk

    Full text link
    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in the midplane and larger at higher altitudes), ions can be slowed down to satisfy the observed velocity constraints. For neutral gas to brake the coupled ion fluid, we find the minimum required mass to be \approx 0.03 M_\earth, consistent with observed upper limits of the hydrogen column density, and substantially reduced relative to previous estimates. Our results favor a scenario in which metallic gas is generated by grain evaporation in the disk, perhaps during grain-grain collisions. We exclude a primordial origin for the gas, but cannot rule out the possibility of its production by falling evaporating bodies near the star. We discuss the implications of this work for observations of gas in other debris disks.Comment: 19 pages, 12 figures, emulateapj. Accepted for publication in Ap

    Characterization of the Lower Atoka formation, Arkoma Basin, Central Arkansas

    Get PDF
    The Carboniferous Lower Atoka outcrops in the Arkoma Basin of Central Arkansas contain turbidite deposits in a channelized and unchannelized submarine fan setting. The objectives of the study were to determine depositional characteristics and reservoir performance of these fine-grained submarine fan deposits. Four outcrops (Highway 5, Perryville, Chula, and Danville) were studied and described in detail emphasizing sedimentary facies, vertical succession of beds, sedimentary structures, and other small-scaled features that cannot be resolved in subsurface deposits. Five distinct sedimentary facies were recognized: Facies A - massive sandstones, Facies B - thin-bedded sandstones with a mudstone drape, Facies C - interbedded thin sandstones and mudstones, Facies D - chaotic deposits, and Facies E - mudstone. Facies and sedimentary characteristics of the outcrops provide clues as to which deepwater sub-environment the facies were deposited. On the basis of field criteria, the outcrops were characterized as channelized, channel or channel margin deposits, or unchannelized, sheet sand deposits. Channel deposits are massive fine-grained sandstones (facies A), with occasional scouring at the base and rip-up clasts throughout. Channel margin deposits consist predominately of interbedded thin sandstones and mudstones (facies C) with many of the sandstone beds containing small-scaled ripples and laminations. Sheet sand deposits are from lower-energy flows with the presence of more sedimentary structures, less scouring and a higher net-to-gross than the channelized deposits. Highway 5 and Perryville outcrops were deposited in a middle fan environment as channel and channel margin deposits. Danville and Chula outcrops were deposited in a lower fan setting as sheet sands. There are several potential source terranes for these deposits determined from point counting and detailed analysis of tourmaline crystals, which suggest that the main source consisted of sedimentary and metasedimetary rocks from the Appalachians with possible sediment transport from the craton interior: the Illinois Basin

    Towards a covariant canonical formulation for closed topological defects without boundaries

    Get PDF
    On the basis of the covariant description of the canonical formalism for quantization, we present the basic elements of the symplectic geometry for a restricted class of topological defects propagating on a curved background spacetime. We discuss the future extensions of the present results.Comment: LaTeX, 12 pages, submitted to Phys. Lett. B. (2002

    Gas Absorption Detected from the Edge-on Debris Disk Surrounding HD32297

    Full text link
    Near-infrared and optical imaging of HD32297 indicate that it has an edge-on debris disk, similar to beta Pic. I present high resolution optical spectra of the NaI doublet toward HD32297 and stars in close angular proximity. A circumstellar absorption component is clearly observed toward HD32297 at the stellar radial velocity, which is not observed toward any of its neighbors, including the nearest only 0.9 arcmin away. An interstellar component is detected in all stars >90 pc, including HD32297, likely due to the interstellar material at the boundary of the Local Bubble. Radial velocity measurements of the nearest neighbors, BD+07 777s and BD+07 778, indicate that they are unlikely to be physically associated with HD32297. The measured circumstellar column density around HD32997, log N(NaI) ~ 11.4, is the strongest NaI absorption measured toward any nearby main sequence debris disk, even the prototypical edge-on debris disk, beta Pic. Assuming that the morphology and abundances of the gas component around HD32297 are similar to beta Pic, I estimate an upper limit to the gas mass in the circumstellar disk surrounding HD32297 of ~0.3 M_Earth.Comment: 13 pages, 2 figures; Accepted for publication in ApJ Letter

    First NACO observations of the Brown Dwarf LHS 2397aB

    Full text link
    Observations of the standard late type M8 star LHS 2397aA were obtained at the ESO-VLT 8m telescope ``Yepun'' using the NAOS/CONICA Adaptive Optics facility. The observations were taken during the NACO commissioning, and the infrared standard star LHS 2397aA was observed in the H, and Ks broad band filters. In both bands the brown dwarf companion LHS2397aB was detected. Using a program recently developed (Bouy et al., 2003) for the detection of stellar binaries we calculated the principal astrometric parameters (angular binary separation and position angle P.A.) and the photometry of LHS 2397aA and LHS 2397aB. Our study largely confirms previous results obtained with the AO-Hokupa'a facility at Gemini-North (Freed et al., 2003); however a few discrepancies are observed.Comment: 5 page

    Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to beta Pictoris b and SPHERE observations

    Full text link
    We aim to interpret future photometric and spectral measurements from these instruments, in terms of physical parameters of the planets, with an atmospheric model using a minimal number of assumptions and parameters. We developed Exoplanet Radiative-convective Equilibrium Model (Exo-REM) to analyze the photometric and spectro- scopic data of directly imaged planets. The input parameters are a planet's surface gravity (g), effective temperature (Teff ), and elemental composition. The model predicts the equilibrium temperature profile and mixing ratio profiles of the most important gases. Opacity sources include the H2-He collision-induced absorption and molecular lines from eight compounds (including CH4 updated with the Exomol line list). Absorption by iron and silicate cloud particles is added above the expected condensation levels with a fixed scale height and a given optical depth at some reference wavelength. Scattering was not included at this stage. We applied Exo-REM to photometric and spectral observations of the planet beta Pictoris b obtained in a series of near-IR filters. We derived Teff = 1550 +- 150 K, log(g) = 3.5 +- 1, and radius R = 1.76 +- 0.24 RJup (2-{\sigma} error bars from photometric measurements). These values are comparable to those found in the literature, although with more conservative error bars, consistent with the model accuracy. We were able to reproduce, within error bars, the J- and H-band spectra of beta Pictoris b. We finally investigated the precision to which the above parameterComment: 15 pages, 14 figures, accepted by A&

    A Visibility Information for Multi-Robot Localization

    Get PDF

    Visibility Contractors: Application to Mobile Robot Localization

    Get PDF
    Visibility is studied and used in several fields: computer graphics, telecommunication, robotics... For instance, in Computer-aided design (CAD) synthesis images are created by simulating light propagation in a scene. Visibility notions are then necessary to compute the visible objects from a point of view, and the shadow of those objects. In mobile robotics the visibility is used for path planning (visibility graph) and localization problems. This presentation is about visibility information for mobile robot localization. The objective is twofold. First a visibility notion based on segment intersections is presented. By considering a set-membership approach it is possible to develop contractors associated to this visibility relation. Then two applications of those visibility contractors to mobile robot localization are presented. The first one corresponds to the pose tracking of a team of robots. The idea is to use a Boolean information (the visibility between two robots: two robots are visible or not) in order to avoid the drifting of those robots (in order to maintain the precision of their position estimations). The second application corresponds to the processing of an original constraint for a set-membership global localization algorithm. This global localization algorithm is based on a CSP approach (Constraint Satisfaction Problem). Adding a visibility constraint to this CSP improves the accuracy of the algorithm
    corecore