22,262 research outputs found

    Fine structure of distributions and central limit theorem in diffusive billiards

    Full text link
    We investigate deterministic diffusion in periodic billiard models, in terms of the convergence of rescaled distributions to the limiting normal distribution required by the central limit theorem; this is stronger than the usual requirement that the mean square displacement grow asymptotically linearly in time. The main model studied is a chaotic Lorentz gas where the central limit theorem has been rigorously proved. We study one-dimensional position and displacement densities describing the time evolution of statistical ensembles in a channel geometry, using a more refined method than histograms. We find a pronounced oscillatory fine structure, and show that this has its origin in the geometry of the billiard domain. This fine structure prevents the rescaled densities from converging pointwise to gaussian densities; however, demodulating them by the fine structure gives new densities which seem to converge uniformly. We give an analytical estimate of the rate of convergence of the original distributions to the limiting normal distribution, based on the analysis of the fine structure, which agrees well with simulation results. We show that using a Maxwellian (gaussian) distribution of velocities in place of unit speed velocities does not affect the growth of the mean square displacement, but changes the limiting shape of the distributions to a non-gaussian one. Using the same methods, we give numerical evidence that a non-chaotic polygonal channel model also obeys the central limit theorem, but with a slower convergence rate.Comment: 16 pages, 19 figures. Accepted for publication in Physical Review E. Some higher quality figures at http://www.maths.warwick.ac.uk/~dsander

    Gravitational polarization and the phenomenology of MOND

    Full text link
    The modified Newtonian dynamics (MOND) has been proposed as an alternative to the dark matter paradigm; the philosophy behind is that there is no dark matter and we witness a violation of the Newtonian law of dynamics. In this article, we interpret differently the phenomenology sustaining MOND, as resulting from an effect of "gravitational polarization", of some cosmic fluid made of dipole moments, aligned in the gravitational field, and representing a new form of dark matter. We invoke an internal force, of non-gravitational origin, in order to hold together the microscopic constituents of the dipole. The dipolar particles are weakly influenced by the distribution of ordinary matter; they are accelerated not by the gravitational field, but by its gradient, or tidal gravitational field.Comment: 14 pages, 1 figure, to appear in Classical and Quantum Gravit

    Ordered Measurements of Permutationally-Symmetric Qubit Strings

    Full text link
    We show that any sequence of measurements on a permutationally-symmetric (pure or mixed) multi-qubit string leaves the unmeasured qubit substring also permutationally-symmetric. In addition, we show that the measurement probabilities for an arbitrary sequence of single-qubit measurements are independent of how many unmeasured qubits have been lost prior to the measurement. Our results are valuable for quantum information processing of indistinguishable particles by post-selection, e.g. in cases where the results of an experiment are discarded conditioned upon the occurrence of a given event such as particle loss. Furthermore, our results are important for the design of adaptive-measurement strategies, e.g. a series of measurements where for each measurement instance, the measurement basis is chosen depending on prior measurement results.Comment: 13 page

    The Organic Research Centre - Elm Farm:Bulletin 87

    Get PDF
    Bulletin 87 with coverage of Avian Influenza H5N1 in Suffolk,commentary on Biofuels, a paper on the organic "transition to sustainable resilience",paper on participatory approach to agronomy trials,update on evolutionary breeding of wheat project,article on formation of new growers alliance in UK

    Study of an auroral zone rocket experiment Final report

    Get PDF
    Measurement of flux and energy spectra of protons, energetic particles, hydrogen atoms, and electrons in auroral zone by Nike-Tomahawk sounding rocke

    Cross-Hedging Fishmeal: Exploring Corn and Soybean Meal Futures Contracts

    Get PDF
    During 2006 the fishmeal price nearly doubled from 500MTtoover500MT to over 900MT. The objective of this research is to determine the optimal cross-hedge ratio between fishmeal and soybean meal and corn, and corresponding hedging weight between corn and soybean. Results indicate all hedging weight should be placed on the corn futures contract. This is an interesting result since prior fishmeal cross-hedging research has not analyzed the corn futures contract as a risk management mechanism.Crop Production/Industries, Risk and Uncertainty,

    A Bulk-Parallel Priority Queue in External Memory with STXXL

    Get PDF
    We propose the design and an implementation of a bulk-parallel external memory priority queue to take advantage of both shared-memory parallelism and high external memory transfer speeds to parallel disks. To achieve higher performance by decoupling item insertions and extractions, we offer two parallelization interfaces: one using "bulk" sequences, the other by defining "limit" items. In the design, we discuss how to parallelize insertions using multiple heaps, and how to calculate a dynamic prediction sequence to prefetch blocks and apply parallel multiway merge for extraction. Our experimental results show that in the selected benchmarks the priority queue reaches 75% of the full parallel I/O bandwidth of rotational disks and and 65% of SSDs, or the speed of sorting in external memory when bounded by computation.Comment: extended version of SEA'15 conference pape

    Engineering adiabaticity at an avoided crossing with optimal control

    Full text link
    We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with non-uniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)]. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a non-uniform quantum speed limit
    • …
    corecore