5,593 research outputs found

    Orbits of Exceptional Groups, Duality and BPS States in String Theory

    Get PDF
    We give an invariant classification of orbits of the fundamental representations of exceptional groups E7(7)E_{7(7)} and E6(6)E_{6(6)} which classify BPS states in string and M theories toroidally compactified to d=4 and d=5. The exceptional Jordan algebra and the exceptional Freudenthal triple system and their cubic and quartic invariants play a major role in this classification. The cubic and quartic invariants correspond to the black hole entropy in d=5 and d=4, respectively. The classification of BPS states preserving different numbers of supersymmetries is in close parallel to the classification of the little groups and the orbits of timelike, lightlike and space-like vectors in Minkowski space. The orbits of BPS black holes in N=2 Maxwell-Einstein supergravity theories in d=4 and d=5 with symmetric space geometries are also classified including the exceptional N=2 theory that has E7(−25)E_{7(-25)} and E6(−26)E_{6(-26)} as its symmety in the respective dimensions.Comment: New references and two tables added, a new section on the orbits of N=2 Maxwell-Einstein supergravity theories in d=4 and d=5 included and some minor changes were made in other sections. 17 pages. Latex fil

    Plant yourself where language blooms: Direct experience of nature changes how parents and children talk about nature.

    Get PDF
    The current study investigated the affordances of direct and indirect experience of nature on parent-child talk. Parents and children produced a wider range of nature words when exploring a park (direct experience) than when exploring a thematically matched indoor visitor center (indirect experience). Parents and children also produced more plant-related nature word types when exploring the park compared to the visitor center. Findings suggest that direct experience of nature increases the diversity and specificity of parent-child talk about nature, and mitigates the phenomenon of “plant blindness” (cf. Wandersee & Schussler, 1999). Direct experience of nature provides an optimal context for children to learn the language of nature and consequently to cultivate children's status as custodians of the natural world

    Virtual-crystal approximation that works: Locating a composition phase boundary in Pb(Zr_{1-x}Ti_3)O_3

    Full text link
    We present a new method for modeling disordered solid solutions, based on the virtual crystal approximation (VCA). The VCA is a tractable way of studying configurationally disordered systems; traditionally, the potentials which represent atoms of two or more elements are averaged into a composite atomic potential. We have overcome significant shortcomings of the standard VCA by developing a potential which yields averaged atomic properties. We perform the VCA on a ferroelectric oxide, determining the energy differences between the high-temperature rhombohedral, low-temperature rhombohedral and tetragonal phases of Pb(Zr_{1-x}Ti_x)O_3 at x=0.5 and comparing these results to superlattice calculations and experiment. We then use our new method to determine the preferred structural phase at x=0.4. We find that the low-temperature rhombohedral phase becomes the ground state at x=0.4, in agreement with experimental findings.Comment: 5 pages, no figure

    Using binary stars to bound the mass of the graviton

    Get PDF
    Interacting white dwarf binary star systems, including helium cataclysmic variable (HeCV) systems, are expected to be strong sources of gravitational radiation, and should be detectable by proposed space-based laser interferometer gravitational wave observatories such as LISA. Several HeCV star systems are presently known and can be studied optically, which will allow electromagnetic and gravitational wave observations to be correlated. Comparisons of the phases of a gravitational wave signal and the orbital light curve from an interacting binary white dwarf star system can be used to bound the mass of the graviton. Observations of typical HeCV systems by LISA could potentially yield an upper bound on the inverse mass of the graviton as strong as h/mg=λg>1×1015h/m_{g} = \lambda_{g} > 1 \times 10^{15} km (mg<1×10−24m_{g} < 1 \times 10^{-24} eV), more than two orders of magnitude better than present solar system derived bounds.Comment: 21 pages plus 4 figures; ReVTe

    Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants

    Get PDF
    The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America

    The Hot Inner Disk of FU Ori

    Full text link
    We have constructed a detailed radiative transfer disk model which reproduces the main features of the spectrum of the outbursting young stellar object FU Orionis from ~ 4000 angstrom, to ~ 8 micron. Using an estimated visual extinction Av~1.5, a steady disk model with a central star mass ~0.3 Msun and a mass accretion rate ~ 2e-4 Msun/yr, we can reproduce the spectral energy distribution of FU Ori quite well. With the mid-infrared spectrum obtained by the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, we estimate that the outer radius of the hot, rapidly accreting inner disk is ~ 1 AU using disk models truncated at this outer radius. Inclusion of radiation from a cooler irradiated outer disk might reduce the outer limit of the hot inner disk to ~ 0.5 AU. In either case, the radius is inconsistent with a pure thermal instability model for the outburst. Our radiative transfer model implies that the central disk temperature Tc > 1000 K out to ~ 0.5 - 1 AU, suggesting that the magnetorotational instability (MRI) can be supported out to that distance. Assuming that the ~ 100 yr decay timescale in brightness of FU Ori represents the viscous timescale of the hot inner disk, we estimate the viscosity parameter (alpha) to be ~ 0.2 - 0.02 in the outburst state, consistent with numerical simulations of MRI in disks. The radial extent of the high mass accretion region is inconsistent with the model of Bell & Lin, but may be consistent with theories incorporating both gravitational instability and MRI.Comment: 32 pages, 10 figures, to appear in the Astrophysical Journa

    PSR J1723-2837: An Eclipsing Binary Radio Millisecond Pulsar

    Full text link
    We present a study of PSR J1723-2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ~15% during the pulsar's orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsar's (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the star's association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 +/- 0.5, corresponding to a companion mass range of 0.4 to 0.7 Msun and an orbital inclination angle range of between 30 and 41 degrees, assuming a pulsar mass range of 1.4-2.0 Msun. Spectroscopy indicates a spectral type of G for the companion and an inferred Roche-lobe-filling distance that is consistent with the distance estimated from radio dispersion. The features of PSR J1723-2837 indicate that it is likely a "redback" system. Unlike the five other Galactic redbacks discovered to date, PSR J1723-2837 has not been detected as a gamma-ray source with Fermi. This may be due to an intrinsic spin-down luminosity that is much smaller than the measured value if the unmeasured contribution from proper motion is large.Comment: 11 pages, including 8 figures and 5 tables. Accepted by the Astrophysical Journa

    Direct characterization of the native structure and mechanics of cyanobacterial carboxysomes

    Get PDF
    Carboxysomes are proteinaceous organelles that play essential roles in enhancing carbon fixation in cyanobacteria and some proteobacteria. These self-assembling organelles encapsulate Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase using a protein shell structurally resembling an icosahedral viral capsid. The protein shell serves as a physical barrier to protect enzymes from the cytosol and a selectively permeable membrane to mediate transport of enzyme substrates and products. The structural and mechanical nature of native carboxysomes remain unclear. Here, we isolate functional β-carboxysomes from the cyanobacterium Synechococcus elongatus PCC7942 and perform the first characterization of the macromolecular architecture and inherent physical mechanics of single β-carboxysomes using electron microscopy, atomic force microscopy (AFM) and proteomics. Our results illustrate that the intact β-carboxysome comprises three structural domains, a single-layered icosahedral shell, an inner layer and paracrystalline arrays of interior Rubisco. We also observe the protein organization of the shell and partial β-carboxysomes that likely serve as the β-carboxysome assembly intermediates. Furthermore, the topography and intrinsic mechanics of functional β-carboxysomes are determined in native conditions using AFM and AFM-based nanoindentation, revealing the flexible organization and soft mechanical properties of β-carboxysomes compared to rigid viruses. Our study provides new insights into the natural characteristics of β-carboxysome organization and nanomechanics, which can be extended to diverse bacterial microcompartments and are important considerations for the design and engineering of functional carboxysomes in other organisms to supercharge photosynthesis. It offers an approach for inspecting the structural and mechanical features of synthetic metabolic organelles and protein scaffolds in bioengineering

    Holographic fermions in charged Gauss-Bonnet black hole

    Full text link
    We study the properties of the Green's functions of the fermions in charged Gauss-Bonnet black hole. What we want to do is to investigate how the presence of Gauss-Bonnet coupling constant α\alpha affects the dispersion relation, which is a characteristic of Fermi or non-Fermi liquid, as well as what properties such a system has, for instance, the Particle-hole (a)symmetry. One important result of this research is that we find for q=1q=1, the behavior of this system is different from that of the Landau Fermi liquid and so the system can be candidates for holographic dual of generalized non-Fermi liquids. More importantly, the behavior of this system increasingly similar to that of the Landau Fermi liquid when α\alpha is approaching its lower bound. Also we find that this system possesses the Particle-hole asymmetry when q≠0q\neq 0, another important characteristic of this system. In addition, we also investigate briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE
    • …
    corecore