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Abstract

We give an invariant classi�cation of orbits of the fundamental repre-

sentations of exceptional groups E7(7) and E6(6) which classify BPS states

in string and M theories toroidally compacti�ed to d = 4 and 5. The ex-

ceptional Jordan algebra and the exceptional Freudenthal triple system and

their cubic and quartic invariants play a major role in this classi�cation.

The cubic and quartic invariants correspond to the black hole entropy in

d = 5 and d = 4, respectively. The classi�cation of BPS states preserving

di�erent numbers of supersymmetries is in close parallel to the classi�cation

of the little groups and the orbits of timelike, lightlike and space-like vectors

in Minkowski space.
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1 Introduction

The exceptional groups E7(7) and E6(6) appear as duality symmetries [1, 2]

of the low energy actions and their discrete subgroups as symmetries of the

non-perturbative BPS spectrum of string and M theories in d = 4 and 5 pre-

serving N = 8 supersymmetry [3]. The charges of the extremal BPS black

holes can be assigned to the fundamental representations of the exceptional

groups E7(7) and E6(6) which are 56 and 27 dimensional ,respectively. The

entropy of these black holes in d = 5 and d = 4 is given by the square root of

the cubic and quartic invariants of E6(6) and E7(7) , respectively [4, 5]. How-

ever, the charge con�gurations must satisfy additional restrictions depending

on the number of supersymmetries preserved. In fact, the eigenvalues of the

central charge matrix must be degenerate when more than one supersymme-

try is preserved by the black hole solution. These constraints were recently

investigated in terms of a certain set of invariant conditions on the represen-

tation [6]. In this paper we give a classi�cation of such BPS states in terms

of orbits of E6(6) and E7(7) in the corresponding representation.

2 Jordan Algebras , Exceptional Groups and Their

Orbits

The cubic invariant I3 in the 27 dimensional representation of E6 can be

identi�ed with the cubic norm of the exceptional Jordan algebra JO3 of 3�3

hermitian matrices over the composition algebra of octonions O with the

symmetric Jordan product

j1 � j2 = j2 � j1 (2 - 1)

that satis�es the Jordan identity [7, 8, 9, 10, 11, 12]

j1 � (j2 � j
2
1) = (j1 � j2) � j

2
1 (2 - 2)

A generic element j of JO3 has the form

j =

0
B@ �1 o3 o�2

o�3 �2 o1
o2 o�1 �3

1
CA (2 - 3)

where �i take values over the underlying �eld which we take to be real

numbers R and oi (i = 1; 2; 3) are elements of O. The norm of an octonion
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o is de�ned as

N(o) = oo� = o�o (2 - 4)

where � denotes octonion conjugation. There are di�erent forms of the com-

position algebra of octonions. For the division algebra of real octonions the

norm is invariant under O(8) and for split octonions the norm is invariant

under O(4; 4). For N = 8 supergravity the relevant form of JO3 is the one

de�ned over the split octonions and for the exceptional N = 2 Maxwell-

Einstein supergravity [11] it is the one de�ned over real octonions. In the

rest of this paper we shall restrict ourselves to JO3 de�ned over the split

octonions and refer to it as the split exceptional Jordan algebra. 3 The

automorphism group of the split exceptional Jordan algebra is the noncom-

pact F4(4) with maximal compact subgroup USp(6)�USp(2) [9]. Note that

F4(4) is also the isometry group of the quaternionic manifold of a maximal

N = 2 matter-Einstein supergravity one can obtain by truncation of the

N = 8 supergravity in d = 5 [11, 13]. The cubic norm I3 of J
O
3 is given by

I3 = �1�2�3 � �1(o1o
�

1)� �2(o2o
�

2)� �3(o3o
�

3) + 2Re(o1o2o3) (2 - 5)

where Re represents the real part of an octonion and satis�es

Re(o1o2)o3 = Reo1(o2o3) (2 - 6)

The invariance group of the norm form of a Jordan algebra J is referred

to as the reduced structure group [8] and denoted as St0(J). For the split

exceptional Jordan algebra the reduced structure group is the exceptional

group E6(6) with a maximal compact subgroup USp(8). We should note that

USp(8) is the automorphism group of the N = 8 Poincare supersymmetry

algebra in d = 5 [2]. An element of JO3 can be brought to a diagonal form by

an F4(4) rotation [10] and if we denote the eigenvalues of a generic element

j as �i (i = 1; 2; 3) the cubic norm is simply

I3(j) = �1�2�3 (2 - 7)

To make the analysis that follows clearer from a physics perspective we

shall make an analogy with Minkowski space M4 and its symmetries follow-

ing [9, 14, 15]. A four vector in M4 can be represented by 2 � 2 matrices

x = x��
� where �0 = 12 and �i (i = 1; 2; 3) are the Pauli matrices. As 2�2

3
We should note that the split exceptional Jordan algebra and its associated symmetries

�rst appeared in physics literature in attempts to �nd octonionic realizations of space-time

supersymmetry [9].
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matrices the coordinates x can be considered as elements of the Jordan al-

gebra JC2 of Hermitian matrices over C with the symmetric Jordan product

which preserves hermiticity. The automorphism group of JC2 is the covering

group SU(2) of the rotation group which is the analog of F4(4) for JO3 .

The norm form of JC2 is quadratic and is given by the ordinary determi-

nant. The invariance group the quadratic norm of JC2 is the covering group

Sl(2;C) of the Lorentz group SO(3; 1) which is the analog of E6(6) for J
O
3 .

In Minkowski space a vector is characterized by its norm and the parame-

ters of the corresponding orbits. Time-like, space-like and light-like vectors

corresponding to positive, negative and vanishing norms have orbits
Sl(2;C)
SU(2)

,

Sl(2;C)
SU(1;1)

and
Sl(2;C)
E2

, respectively. Similarly, we can characterize the elements

of JO3 by their norms and the parameters of their orbits. The generic orbit

corresponding to a non-vanishing norm I3(j) has the 26 dimensional orbit

E6(6)

F4(4)
(2 - 8)

In contrast to the Minkowskian case the little groups of "space-like" and

"time-like" vectors are the same in the case of JO3 since its norm is cubic. 4

As for "light-like" elements j of JO3 with I3(j) = 0 there exist two distinct

orbits depending on whether one or two of the eigenvalues of j vanish. The

generic light-like orbit corresponding to a single vanishing eigenvalue is given

by the 26 dimensional coset space

E6(6)

O(4; 4) � (T8v � T8s � T8c)
(2 - 9)

where � stands for semidirect product and T8i for i = v; s; c are translations

corresponding to three di�erent eight dimensional representations of O(4; 4)

that are in triality. Furthermore they satisfy

[T8v ; T8s ] = T8c (2 - 10)

[T8v ; T8c ] = T8s (2 - 11)

with all the other commutators among them vanishing. The critical light-

like orbit corresponds to an element j with two vanishing eigenvalues and is

given by the 17 dimensional space

E6(6)

O(5; 5) � T16
(2 - 12)

4
As we shall see later the orbits of "time-like" and "space-like" vectors are quite dif-

ferent in four dimensions where the invariant norm form is quartic!
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where T16 is an Abelian subgroup that decomposes as T8s � T8c under the

O(4; 4) subgroup. We should note that the distinction between generic and

critical light-like orbits does not exist in the Minkowskian case since the

norm is quadratic in that case.5

As is well-known the invariance group of the light-cone in Minkowski

space M4 is the conformal group SO(4; 2) which acts non-linearly. In fact

the Minkowski space M4 is simply the quotient space

SO(4; 2)

SO(3; 1) �O(1; 1) � T4
(2 - 13)

When we represent the coordinates ofM4 in terms of hermitian 2�2 matrices

the action of the conformal group can be represented as a linear fractional

group. As such the conformal group can be interpreted as the linear frac-

tional group of quaternions [16]. However, if we think of the 2�2 hermitian

matrices as elements of the Jordan algebra JC2 the conformal group becomes

the linear fractional group of Jordan algebra JC2 [17, 9, 14] which generalizes

to all Jordan algebras and Jordan superalgebras [17, 14, 15]. The invariance

group of the light-cone of JO3 de�ned by the condition I3(j) = 0 is the non-

compact exceptional group E7(7) which acts as the linear fractional group

of JO3 [17, 9, 15]. This implies that the 27 dimensional space of JO3 can be

regarded as the quotient space

E7(7)

E6(6) �O(1; 1) � T27
(2 - 14)

The above examples of linear fractional group actions are particular cases

of the general nonlinear actions of noncompact groups G whose Lie algebras

g admit a three grading with respect to a maximal rank subalgebra g0

g = g�1 � g0 � g+1 (2 - 15)

In such cases there exists a nonlinear action of G on the grade +1 space

g+1 via fractional linear transformations [17, 18]. In the case of E7(7), g
0

is simply the Lie algebra of E6(6)�O(1; 1) and g+1 is the 27 dimensional

subspace corresponding to JO3 . We will comment on the relevance of the

\conformal" extensions of duality groups later.

We now consider the symmetries of superstring or M theories toroidally

compacti�ed to four dimensions with N = 8 supersymmetry. In this case

5
In d = 4 where the cubic norm is replaced by a quartic norm an even richer structure

exists as we shall see later.
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the duality group is E7(7) with maximal compact subgroup SU(8). The

compact subgroup SU(8) acts as the automorphism group of the N = 8

supersymmetry algebra. The generic charged vector for a BPS state has

56 components with a quartic norm I4. The 56 dimensional representation

space of E7(7) can be represented as elements of the exceptional Freudenthal

triple system [19] which can be realized as 2� 2 \matrices"of the form [20]:

q =

 
� x

y �

!
(2 - 16)

where �; � 2 R and x; y are elements of JO3 . One can de�ne a symmetric

four-linear form over the exceptional Freudenthal system which induces a

quartic norm. Up to an overall normalization the quartic norm can be

written as [20]

I4(q) = f�� � T (x; y)g2 + 6f�I3(y) + �I3(x)� T (x#; x#)g (2 - 17)

where T (x; y) � Trace(x � y) and # stands for the quadratic adjoint map

of JO3 which has the property [21]

x## = I3(x)x (2 - 18)

The above quartic form I4(q) is invariant under the linear action of E7(7)

on the exceptional Freudenthal triple system. The above realization of 56

of E7(7) corresponds to the decomposition

56 = 271 + �27
�1

+ 13 + �1�3 (2 - 19)

with respect to the E6(6) � O(1; 1) subgroup. We should also note that 56

can also be decomposed similarly with respect to the E6(2)�U(1) subgroup

of E7(7). In this case the two singlets are complex conjugates of each other

carrying opposite charges with respect to U(1). E6(2) has the maximal

compact subgroup SU(6)�SU(2) and corresponds to the isometry group of

the quaternionic manifold of a maximal N = 2 matter-Einstein supergravity

truncation of the N = 8 supergravity in d = 4. In contrast to the �ve

dimensional case and in analogy with the Minkowskian case we have two

di�erent classes of generic orbits with non-vanishing quartic form I4. They

correspond to
E7(7)

E6(6)

(2 - 20)
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and to
E7(7)

E6(2)

(2 - 21)

As in [6] we choose the overall sign of the quartic invariant such that it

corresponds to entropy of the BPS black holes. With this choice the orbit

corresponding to
E7(7)

E6(6)
has I4 < 0 and the orbit corresponding to

E7(7)

E6(2)
has

I4 > 0. This can be seen from the decomposition of 56 of E7(7) with respect

to SU(6) � SU(2)

56 = (15; 1) + ( �15; 1) + (6; 2) + (�6; �2) + 1 + �1 (2 - 22)

and retaining the singlets [13].

We now consider \light-like orbits" for which I4 = 0. There are 3 dis-

tinct cases depending on the number of vanishing eigenvalues that lead to

vanishing I4. We de�ne the generic light-like orbit to be one for which a

single eigenvalue vanishes. The orbit in this case is given by

E7(7)

F4(4) � T26
(2 - 23)

where T26 is a 26 dimensional Abelian subgroup of E7(7). The critical light-

like orbit has two vanishing eigenvalues and correspond to the 45 dimensional

orbit
E7(7)

O(5; 5) � (T10 � T16 � T �16 � T1)
(2 - 24)

The strange looking 88 dimensional triangular subgroup of E7(7) above can

be seen from the better known triangular subgroup

O(6; 6) � (T32 � T1) (2 - 25)

of E7(7) [22, 24]. The doubly critical light-like orbit with three vanishing

eigenvalues is given by the 28 dimensional quotient space

E7(7)

E6(6) � T27
(2 - 26)

We should note that the determination of the little groups that appear

in the denominators of the above quotient spaces follows directly from the

various symmetry groups of JO3 and their di�erent gradings [22, 23, 24].

In the next section we shall obtain the counting of the dimensions of the

orbits via a complementary procedure that follows from the normal form for

the central charge matrix and which relates orbits to BPS states preserving

di�erent number of supersymmetries.
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3 BPS States and Supersymmetry

Extremal BPS black holes of N = 8 supergravity correspond to massive

representations of the N = 8 supersymmetry algebra that saturate the BPS

bound. They fall into three categories depending on whether the black

hole background preserves 1=2; 1=4 or 1=8 of the original supersymmetry

[25]. BPS states preserving 1=8 supersymmetry are the only ones with non-

vanishing entropy and regular horizon. BPS states with 1=4 and 1=2 super-

symmetry have vanishing entropy [5]. In this section we will relate the orbits

of the fundamental representations of E6(6) and E7(7) to these di�erent cases.

To this end we will relate our classi�cation to the analysis of [6]. The de-

generacy of the eigenvalues of the central charge matrix was there related to

U-duality invariant constraints on the central charge matrix. This analysis

heavily depends on the so-called normal frame of the charge matrix which

is generically obtained by making a rotation under the automorphism group

of the supersymmetry algebra. The automorphism group of the supersym-

metry algebra essentially coincides with the maximal compact subgroup of

the duality group.

Let us �rst study the case of d = 5. The 27 dimensional representation

of E6(6) corresponds to the symplectic traceless anti-symmetric tensor rep-

resentation of USp(8). It can be brought to a skew diagonal form via an

USp(8) transformation. In terms of the eigenvalues ei of this matrix the

cubic invariant takes the form [6]

I3 = (e1 + e2)(e1 + e3)(e2 + e3) (3 - 1)

We then see that the three di�erent orbits described in the preceding section

correspond to the following three cases [6]

a) I3 6= 0

b) I3 = 0; @I3
@ei

6= 0

c) @I3
@ei

= 0

They correspond to the cases of 1=8; 1=4 and 1=2 supersymmetry since in

case a) all eigenvalues are di�erent from zero ; in case b) two eigenvalues

coincide and in case c) all three eigenvalues coincide. Let us now count

the parameters of these 3 di�erent orbits. We �rst note that the subgroup

of F4(4) that preserves the normal form is O(4; 4) with maximal compact

subgroup SU(2)4 . Thus the generic case of I3 6= 0 involves 3 eigenvalues

[26] plus 24 angles corresponding to

USp(8)

SU(2)4
(3 - 2)
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In case b) the little group is the inhomogeneous ISO(4; 4) . This is a

subgroup of the triangular subgroup O(4; 4)� (T8v �T8s �T8c) of E6(6) and

again we have 2 + 24 = 26 parameters. In case c) corresponding to the

critical orbit the little group of the normal form is O(5; 5) with maximal

compact subgroup O(5) � O(5) = USp(4) � USp(4). Thus the number of

parameters is one eigenvalue plus 16 angles of
USp(8)

USp(4)�USp(4)
. Note that

O(5; 5) is a subgroup of the triangular little group of the 17 dimensional

orbit.

In d = 4 the 56 dimensional representation of E7(7) can also be described

by a complex 8 � 8 matrix and its complex conjugate. This 8 � 8 matrix

can be brought to a skew diagonal form by an SU(8) rotation. The skew

diagonal form has 5 parameters [26], an overall phase and four real positive

skew diagonal eigenvalues. The skew diagonal form is invariant underO(4; 4)

which is the subgroup of E6(2) that preserves the normal form. The generic

orbit then can be parametrized by �ve \normal" coordinates plus 51 angles

in
SU(8)
USp(2)4

. In four dimensions the extra condition for a generic state to be

1=8 BPS with non-vanishing entropy is that I4 > 0 [6]. This is a consequence

of the fact that at the horizon all central charge eigenvalues but the BPS

mass vanish. Thus one has [4]

I4 = I4Horizon =M4
BPS (3 - 3)

This selects the \time-like" orbit
E7(7)

E6(2)
.

Let us now consider the 3 light-like orbits. The generic (55 dimensional)

light-like orbit has four di�erent eigenvalues of the 8 � 8 matrix and still

preserves 1=8 supersymmetry. The critical light-like orbit corresponding to

1=4 supersymmetry has eigenvalues that coincide in pairs and zero overall

phase [6]. The simple part of the little group in this case is O(5; 5) and the

number of parameters is given by the two normal parameters plus the 43

angles of
SU(8)
USp(4)2

. The double critical orbit corresponds to four coinciding

eigenvalues in the normal form , zero phase and 1=2 supersymmetry. The

little group preserving this form is E6(6) with maximal compact subgroup

USp(8). The total number of parameters of the double critical orbit is one

normal parameter and 27 angles of
SU(8)
USp(8)

which agrees with the results of

the previous section.
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4 Conclusions

Above we have determined the orbits of the exceptional groups correspond-

ing to duality symmetries of toroidally compacti�ed string or M theories to

4 and 5 dimensions. our analysis is classical and for the quantum theory the

relevant U{duality groups become discrete [3]. We expect our results can

be extended to the discrete cases as well.

An intriguing aspect of our results is the appearance of larger symmetries

acting non-linearly on the generalized light-cones de�ned by vanishing cubic

and quartic forms. In d = 5 this turns out to be E7(7) that acts via linear

fractional transformations on JO3 . There is a a discrete subgroup of E7(7)

that acts via discrete linear fractional transformations on JO3 . This makes it

tempting to speculate that the generalized conformal group acts as spectrum

generating symmetry of the string or M theory toroidally compacti�ed to

d = 5. In four dimensions we expect the analog of this generalized conformal

group to be E8(8). However, E8(8) does not admit 3-grading with respect to

any maximal rank subalgebra and hence does not act via linear fractional

transformations on 56 of E7(7). However, it has a non-linear action on a

57 dimensional space which splits as 56 + 1 under E7(7)[27]. The physical

meaning of this extra singlet is not clear. This problem may be related to

the di�culty in extending the results on BPS black holes to 3 dimensions.

We should also note that our results can be extended to theories with less

supersymmetry such as heterotic strings and to dualities in space-time di-

mensions greater than �ve. The results for the higher dimensional theories

and further details on the four and �ve dimensional theories will be given

elsewhere [28].
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