480 research outputs found

    Universality in escape from a modulated potential well

    Full text link
    We show that the rate of activated escape WW from a periodically modulated potential displays scaling behavior versus modulation amplitude AA. For adiabatic modulation of an optically trapped Brownian particle, measurements yield lnW(AcA)μ\ln W\propto (A_{\rm c} - A)^{\mu} with μ=1.5\mu = 1.5. The theory gives μ=3/2\mu=3/2 in the adiabatic limit and predicts a crossover to μ=2\mu=2 scaling as AA approaches the bifurcation point where the metastable state disappears.Comment: 4 pages, 3 figure

    Large rare fluctuations in systems with delayed dissipation

    Full text link
    We study the probability distribution and the escape rate in systems with delayed dissipation that comes from the coupling to a thermal bath. To logarithmic accuracy in the fluctuation intensity, the problem is reduced to a variational problem. It describes the most probable fluctuational paths, which are given by acausal equations due to the delay. In thermal equilibrium, the most probable path passing through a remote state has time reversal symmetry, even though one cannot uniquely define a path that starts from a state with given system coordinate and momentum. The corrections to the distribution and the escape activation energy for small delay and small noise correlation time are obtained in the explicit form.Comment: 9 page

    Fluctuation-enhanced frequency mixing in a nonlinear micromechanical oscillator

    Full text link
    We study noise-enhanced frequency mixing in an underdamped micromechanical torsional oscillator. The oscillator is electrostatically driven into bistability by a strong, periodic voltage at frequency ωd\omega_d. A second, weak ac voltage is applied at a frequency ω\omega close to ωd\omega_d. Due to nonlinearity in the system, vibrations occur at both ω\omega and 2ωdω2\omega_d-\omega. White noise is injected into the excitation, allowing the system to occasionally overcome the activation barrier and switch between the two states. At the primary drive frequency where the occupations of the two states are approximately equal, we observe noise-induced enhancement of the oscillation amplitudes at both ω\omega and the down-converted frequency 2ωdω2\omega_d-\omega, in agreement with theoretical predictions. Such enhancement occurs as a result of the noise-induced interstate transitions becoming synchronous with the beating between the two driving frequencies.Comment: 4 pages 5 figure

    Scaling and crossovers in activated escape near a bifurcation point

    Full text link
    Near a bifurcation point a system experiences critical slowing down. This leads to scaling behavior of fluctuations. We find that a periodically driven system may display three scaling regimes and scaling crossovers near a saddle-node bifurcation where a metastable state disappears. The rate of activated escape WW scales with the driving field amplitude AA as lnW(AcA)ξ\ln W \propto (A_c-A)^{\xi}, where AcA_c is the bifurcational value of AA. With increasing field frequency the critical exponent ξ\xi changes from ξ=3/2\xi = 3/2 for stationary systems to a dynamical value ξ=2\xi=2 and then again to ξ=3/2\xi=3/2. The analytical results are in agreement with the results of asymptotic calculations in the scaling region. Numerical calculations and simulations for a model system support the theory.Comment: 18 page

    Effects of noise on hysteresis and resonance width in graphene and nanotubes resonators

    Get PDF
    We investigate the role that noise plays in the hysteretic dynamics of a suspended nanotube or a graphene sheet subject to an oscillating force. We find that not only the size but also the position of the hysteresis region in these systems can be controlled by noise. We also find that nano-resonators act as noise rectifiers: by increasing the noise in the setup, the resonance width of the characteristic peak in these systems is reduced and, as a result, the quality factor is increased.Comment: 15 pages, 6 figures. Sent to PRB (in revision

    Magneto-shear modes and a.c. dissipation in a two-dimensional Wigner crystal

    Full text link
    The a.c. response of an unpinned and finite 2D Wigner crystal to electric fields at an angular frequency ω\omega has been calculated in the dissipative limit, ωτ1\omega \tau \ll 1, where τ1\tau ^{-1} is the scattering rate. For electrons screened by parallel electrodes, in zero magnetic field the long-wavelength excitations are a diffusive longitudinal transmission line mode and a diffusive shear mode. A magnetic field couples these modes together to form two new magneto-shear modes. The dimensionless coupling parameter β=2(ct/cl)σxy/σxx\beta =2(c_{t}/c_{l})|\sigma_{xy}/\sigma_{xx}| where ctc_{t} and clc_{l} are the speeds of transverse and longitudinal sound in the collisionless limit and σxy\sigma_{xy} and σxx\sigma_{xx} are the tensor components of the magnetoconductivity. For β1\beta \geqslant 1, both the coupled modes contribute to the response of 2D electrons in a Corbino disk measurement of magnetoconductivity. For β1\beta \gg 1, the electron crystal rotates rigidly in a magnetic field. In general, both the amplitude and phase of the measured a.c. currents are changed by the shear modulus. In principle, both the magnetoconductivity and the shear modulus can be measured simultaneously.Comment: REVTeX, 7 pp., 4 eps figure

    RF bifurcation of a Josephson junction: microwave embedding circuit requirements

    Full text link
    A Josephson tunnel junction which is RF-driven near a dynamical bifurcation point can amplify quantum signals. The bifurcation point will exist robustly only if the electrodynamic environment of the junction meets certain criteria. In this article we develop a general formalism for dealing with the non-linear dynamics of Josephson junction embedded in an arbitrary microwave circuit. We find sufficient conditions for the existence of the bifurcation regime: a) the embedding impedance of the junction need to present a resonance at a particular frequency ωR\omega_{R}, with the quality factor QQ of the resonance and the participation ratio pp of the junction satisfying Qp1Qp\gg 1, b) the drive frequency should be low frequency detuned away from ωR\omega_{R} by more than 3ωR/(2Q)\sqrt{3}\omega_{R}/(2Q).Comment: Submitted to Phys. Rev. B, 12 pages, 6 figure

    Extinction Rates for Fluctuation-Induced Metastabilities : A Real-Space WKB Approach

    Full text link
    The extinction of a single species due to demographic stochasticity is analyzed. The discrete nature of the individual agents and the Poissonian noise related to the birth-death processes result in local extinction of a metastable population, as the system hits the absorbing state. The Fokker-Planck formulation of that problem fails to capture the statistics of large deviations from the metastable state, while approximations appropriate close to the absorbing state become, in general, invalid as the population becomes large. To connect these two regimes, a master equation based on a real space WKB method is presented, and is shown to yield an excellent approximation for the decay rate and the extreme events statistics all the way down to the absorbing state. The details of the underlying microscopic process, smeared out in a mean field treatment, are shown to be crucial for an exact determination of the extinction exponent. This general scheme is shown to reproduce the known results in the field, to yield new corollaries and to fit quite precisely the numerical solutions. Moreover it allows for systematic improvement via a series expansion where the small parameter is the inverse of the number of individuals in the metastable state

    Thermal Resonance in Signal Transmission

    Get PDF
    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.Comment: To appear in Phys. Rev.

    Detecting and characterizing frequency fluctuations of vibrational modes

    Get PDF
    We show how frequency fluctuations of a vibrational mode can be separated from other sources of phase noise. The method is based on the analysis of the time dependence of the complex amplitude of forced vibrations. The moments of the complex amplitude sensitively depend on the frequency noise statistics and its power spectrum. The analysis applies to classical and to quantum vibrations
    corecore