4,554 research outputs found
Low sidelobe level low-cost earth station antennas for the 12 GHz broadcasting satellite service
An experimental investigation of the performance of 1.22 m and 1.83 m diameter paraboloid antennas with an f/D ratio of 0.38 and using a feed developed by Kumar is reported. It is found that sidelobes below 30 dB can be obtained only if the paraboloids are relatively free of surface errors. A theoretical analysis of clam shell distortion shows that this is a limiting factor in achieving low sidelobe levels with many commercially available low cost paraboloids. The use of absorbing pads and small reflecting plates for sidelobe reduction is also considered
Coaxial prime focus feeds for paraboloidal reflectors
A TE11 - TM11 dual mode coaxial feed for use in prime focus paraboloidal antenna systems is investigated. The scattering matrix parameters of the internal bifurcation junction was determined by the residue calculus technique. The scattering parameters and radiation fields of the aperture were found from the Weinstein solution. The optimum modeing ratio for minimum cross-polarization was determined along with the corresponding optimum feed dimensions. A peak cross-polarization level of -58 dB is predicted. The frequency characteristics were also investigated and a bandwidth of 5% is predicted over which the cross-polarization remains below -30 dB, the input VSWR is below 1.15, and the phase error is less than 10 deg. Theoretical radiation patterns and efficiency curves for a paraboloidal reflector illuminated by this feed were computed. The predicted sidelobe level is below -30 dB and aperture efficiencies greater than 70% are possible. Experimental results are also presented that substantiates the theoretical results. In addition, experimental results for a 'short-cup' coaxial feed are given. The report includes extensive design data for the dual-mode feed along with performance curves showing cross-polarization as a function of feed parameters. The feed is useful for low-cost ground based receiving antennas for use in direct television satellite broadcasting service
Landau-Zener-St\"uckelberg Spectroscopy of a Superconducting Flux Qubit
We proposed a new method to measure the energy spectrum of a superconducting
flux qubit. Different from the conventional frequency spectroscopy, a short
triangle pulse is used to drive the qubit through the anticrossing and
generates Landau-Zener-St\"uckelberg interference patterns, from which the
information of the energy spectrum can be extracted. Without installing
microwave lines one can simplify the experimental setup and reduce the unwanted
effects of noise. Moreover, the method can be applied to other quantum systems,
opening the possibility of calibrating and manipulating qubits with linear
pulses.Comment: 7 pages, 5 figure
Self-Organized Criticality Effect on Stability: Magneto-Thermal Oscillations in a Granular YBCO Superconductor
We show that the self-organized criticality of the Bean's state in each of
the grains of a granular superconductor results in magneto-thermal oscillations
preceding a series of subsequent flux jumps. We find that the frequency of
these oscillations is proportional to the external magnetic field sweep rate
and is inversely proportional to the square root of the heat capacity. We
demonstrate experimentally and theoretically the universality of this
dependence that is mainly influenced by the granularity of the superconductor.Comment: submitted to Physical Review Letters, 4 pages, RevTeX, 4 figures
available as uufile
Purcell effect in wire metamaterials
We study theoretically the enhancement of spontaneous emission in wire
metamaterials. We analyze the dependence of the Purcell factor dependence on
wire dielectric constant for both electric and magnetic dipole sources, and
find an optimal value of the dielectric constant for maximizing the Purcell
factor for the electric dipole. We obtain analytical expressions for the
Purcell factor and also provide estimates for the Purcell factor in realistic
structures operating in both microwave and optical spectral range.Comment: 15 pages, 7 figure
The puzzle of the soft X-ray excess in AGN: absorption or reflection?
The 2-10 keV continuum of AGN is generally well represented by a single power
law. However, at smaller energies the continuum displays an excess with respect
to the extrapolation of this power law, called the ''soft X-ray excess''. Until
now this soft X-ray excess was attributed, either to reflection of the hard
X-ray source by the accretion disk, or to the presence of an additional
comptonizing medium, giving a steep spectrum. An alternative solution proposed
by Gierlinski and Done (2004) is that a single power law well represents both
the soft and the hard X-ray emission and the impression of the soft X-ray
excess is due to absorption of a primary power law by a relativistic wind. We
examine the advantages and drawbacks of reflection versus absorption models,
and we conclude that the observed spectra can be well modeled, either by
absorption (for a strong excess), or by reflection (for a weak excess). However
the physical conditions required by the absorption models do not seem very
realistic: we would prefer an ''hybrid model''.Comment: 4 pages, 3 figures, abstracts SF2A-2005, published by EDP-Sciences
Conference Serie
A modal model for diffraction gratings
A description of an algorithm for a rather general modal grating calculation
is presented. Arbitrary profiles, depth, and permittivity are allowed. Gratings
built up from sub-gratings are allowed, as are coatings on the sidewalls of
lines, and arbitrary complex structure. Conical angles and good conductors are
supported
Coupling Impedances of Small Discontinuities: Dependence on Beam Velocity
The beam coupling impedances of small discontinuities of an accelerator
vacuum chamber have been calculated [e.g., S.S. Kurennoy, R.L. Gluckstern, and
G.V. Stupakov, Phys. Rev. E 52, 4354 (1995)] for ultrarelativistic beams using
the Bethe diffraction theory. Here we extend the results to an arbitrary beam
velocity. The vacuum chamber is assumed to have an arbitrary, but uniform along
the beam path, cross section. The longitudinal and transverse coupling
impedances are derived in terms of series over cross-section eigenfunctions,
while the discontinuity shape enters via its polarizabilities. Simple explicit
formulas for two important particular cases - circular and rectangular chamber
cross sections - are presented. The impedance dependence on the beam velocity
exhibits some unusual features: for example, the reactive impedance, which
dominates in the ultrarelativistic limit, can vanish at a certain beam
velocity, or its magnitude can exceed the ultrarelativistic value many times.
In addition, we demonstrate that the same technique, the field expansion into a
series of cross-section eigenfunctions, is convenient for calculating the
space-charge impedance of uniform beam pipes with arbitrary cross section.Comment: REVTeX, 11 pages, 6 figures. Submitted to Phys. Rev. ST - Accel.
Beam
Nanowire metamaterials with extreme optical anisotropy
We study perspectives of nanowire metamaterials for negative-refraction
waveguides, high-performance polarizers, and polarization-sensitive biosensors.
We demonstrate that the behavior of these composites is strongly influenced by
the concentration, distribution, and geometry of the nanowires, derive an
analytical description of electromagnetism in anisotropic nanowire-based
metamaterials, and explore the limitations of our approach via
three-dimensional numerical simulations. Finally, we illustrate the developed
approach on the examples of nanowire-based high energy-density waveguides and
non-magnetic negative index imaging systems with far-field resolution of
one-sixth of vacuum wavelength.Comment: Updated version; accepted to Appl.Phys.Let
- …