45,360 research outputs found

    Analysis and computer programs to calculate acoustic wave properties of baffled chambers

    Get PDF
    Analytical methods and four computer programs have been developed for calculating wave motion in closed, baffled chambers with rigid and non-rigid boundaries. Application of these methods to design of injector-face baffles in liquid propellant engines will provide significant insight into effects of baffles on combustion stability

    Azimuthal Asymmetry of Direct Photons in High Energy Nuclear Collisions

    Full text link
    We show that a sizeable azimuthal asymmetry, characterized by a coefficient v_2, is to be expected for direct photons produced in non-central high energy nuclear collisions. This signal is generated by photons radiated by jets interacting with the surrounding hot plasma. The anisotropy is out of phase by an angle π/2\pi/2 with respect to that associated with the elliptic anisotropy of hadrons, leading to negative values of v_2. Such an asymmetry, if observed, could be a signature for the presence of a quark gluon plasma and would establish the importance of jet-plasma interactions as a source of electromagnetic radiation.Comment: New title. Final versio

    Dissociation rates of J/psi's with comoving mesons - thermal vs. nonequilibrium scenario

    Get PDF
    We study J/psi dissociation processes in hadronic environments. The validity of a thermal meson gas ansatz is tested by confronting it with an alternative, nonequilibrium scenario. Heavy ion collisions are simulated in the framework of the microscopic transport model UrQMD, taking into account the production of charmonium states through hard parton-parton interactions and subsequent rescattering with hadrons. The thermal gas and microscopic transport scenarios are shown to be very dissimilar. Estimates of J/psi survival probabilities based on thermal models of comover interactions in heavy ion collisions are therefore not reliable.Comment: 12 pages, 6 figure

    Does HBT Measure the Freeze-out Source Distribution?

    Full text link
    It is generally assumed that as a result of multiple scattering, the source distribution measured in HBT interferometry corresponds to a chaotic source at freeze-out. This assumption is subject to question as effects of multiple scattering in HBT measurements must be investigated within a quantum-mechanical framework. Applying the Glauber multiple scattering theory at high energies and the optical model at lower energies, we find that multiple scattering leads to an effective HBT density distribution that depends on the initial chaotic source distribution with an absorption.Comment: 4 pages, talk presented at QM2004 Conference, January 11-17, 2004, Oakland, California, USA, to be published in the Proceeding

    Inference and Optimization of Real Edges on Sparse Graphs - A Statistical Physics Perspective

    Get PDF
    Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory.Comment: 21 pages, 10 figures, major changes: Sections IV to VII updated, Figs. 1 to 3 replace

    Effects of Parton Intrinsic Transverse Momentum on Photon Production in Hard-Scattering Processes

    Full text link
    We calculate the photon production cross section arising from the hard scattering of partons in nucleon-nucleon collisions by taking into account the intrinsic parton transverse momentum distribution and the next-to-leading-order contributions. As first pointed out by Owens, the inclusion of the intrinsic transverse momentum distribution of partons leads to an enhancement of photon production cross section in the region of photon transverse momenta of a few GeV/c for nucleon-nucleon collisions at a center-of-mass energy of a few tens of GeV. The enhancement increases as s\sqrt{s} decreases. Such an enhancement is an important consideration in the region of photon momenta under investigation in high-energy heavy-ion collisions.Comment: 10 pages, 9 figures, in LaTex, revised to include ananlytic evaluation of the hard-scattering integra

    Exploring Early Parton Momentum Distribution with the Ridge from the Near-Side Jet

    Full text link
    In a central nucleus-nucleus collision at high-energies, medium partons kicked by a near-side jet acquire a momentum along the jet direction and subsequently materialize as the observed ridge particles. They carry direct information on the early parton momentum distribution which can be extracted by using the ridge data for central AuAu collisions at \sqrt{s_{NN}}=200 GeV. The extracted parton momentum distribution has a thermal-like transverse momentum distribution but a non-Gaussian, relatively flat rapidity distribution at mid-rapidity with sharp kinematic boundaries at large rapidities that depend on the transverse momentum.Comment: In Proceedings of 20th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions, Jaipur, India, Feb. 4-10, 200

    Interferometry signatures for QCD first-order phase transition in heavy ion collisions at GSI-FAIR energies

    Full text link
    Using the technique of quantum transport of the interfering pair we examine the Hanbury-Brown-Twiss (HBT) interferometry signatures for the particle-emitting sources of pions and kaons produced in the heavy ion collisions at GSI-FAIR energies. The evolution of the sources is described by relativistic hydrodynamics with the system equation of state of the first-order phase transition from quark-gluon plasma (QGP) to hadronic matter. We use quantum probability amplitudes in a path-integral formalism to calculate the two-particle correlation functions, where the effects of particle decay and multiple scattering are taken into consideration. We find that the HBT radii of kaons are smaller than those of pions for the same initial conditions. Both the HBT radii of pions and kaons increase with the system initial energy density. The HBT lifetimes of the pion and kaon sources are sensitive to the initial energy density. They are significantly prolonged when the initial energy density is tuned to the phase boundary between the QGP and mixed phase. This prolongations of the HBT lifetimes of pions and kaons may likely be observed in the heavy ion collisions with an incident energy in the GSI-FAIR energy range.Comment: 16 pages, 4 figure

    Achieving sub-diffraction imaging through bound surface states in negative-refracting photonic crystals at the near-infrared

    Get PDF
    We report the observation of imaging beyond the diffraction limit due to bound surface states in negative refraction photonic crystals. We achieve an effective negative index figure-of-merit [-Re(n)/Im(n)] of at least 380, ~125x improvement over recent efforts in the near-infrared, with a 0.4 THz bandwidth. Supported by numerical and theoretical analyses, the observed near-field resolution is 0.47 lambda, clearly smaller than the diffraction limit of 0.61 lambda. Importantly, we show this sub-diffraction imaging is due to the resonant excitation of surface slab modes, allowing refocusing of non-propagating evanescent waves

    Cooperativity and Frustration in Protein-Mediated Parallel Actin Bundles

    Full text link
    We examine the mechanism of bundling of cytoskeletal actin filaments by two representative bundling proteins, fascin and espin. Small-angle X-ray studies show that increased binding from linkers drives a systematic \textit{overtwist} of actin filaments from their native state, which occurs in a linker-dependent fashion. Fascin bundles actin into a continuous spectrum of intermediate twist states, while espin only allows for untwisted actin filaments and fully-overtwisted bundles. Based on a coarse-grained, statistical model of protein binding, we show that the interplay between binding geometry and the intrinsic \textit{flexibility} of linkers mediates cooperative binding in the bundle. We attribute the respective continuous/discontinous bundling mechanisms of fascin/espin to differences in the stiffness of linker bonds themselves.Comment: 5 pages, 3 figures, figure file has been corrected in v
    • …
    corecore