884 research outputs found

    Interaction energy functional for lattice density functional theory: Applications to one-, two- and three-dimensional Hubbard models

    Full text link
    The Hubbard model is investigated in the framework of lattice density functional theory (LDFT). The single-particle density matrix γij\gamma_{ij} with respect the lattice sites is considered as the basic variable of the many-body problem. A new approximation to the interaction-energy functional W[γ]W[\gamma] is proposed which is based on its scaling properties and which recovers exactly the limit of strong electron correlations at half-band filling. In this way, a more accurate description of WW is obtained throughout the domain of representability of γij\gamma_{ij}, including the crossover from weak to strong correlations. As examples of applications results are given for the ground-state energy, charge-excitation gap, and charge susceptibility of the Hubbard model in one-, two-, and three-dimensional lattices. The performance of the method is demonstrated by comparison with available exact solutions, with numerical calculations, and with LDFT using a simpler dimer ansatz for WW. Goals and limitations of the different approximations are discussed.Comment: 25 pages and 8 figures, submitted to Phys. Rev.

    Density-Matrix functional theory of strongly-correlated lattice fermions

    Full text link
    A density functional theory (DFT) of lattice fermion models is presented, which uses the single-particle density matrix gamma_{ij} as basic variable. A simple, explicit approximation to the interaction-energy functional W[gamma] of the Hubbard model is derived from exact dimer results, scaling properties of W[gamma] and known limits. Systematic tests on the one-dimensional chain show a remarkable agreement with theBethe-Ansatz exact solution for all interaction regimes and band fillings. New results are obtained for the ground-state energyand charge-excitation gap in two dimensions. A successful description of strong electron correlations within DFT is achieved.Comment: 15 pages, 6 figures Submitted to PR

    Genetic algorithm optimization of entanglement

    Full text link
    We present an application of a genetic algorithmic computational method to the optimization of the concurrence measure of entanglement for the cases of one dimensional chains, as well as square and triangular lattices in a simple tight-binding approach in which the hopping of electrons is much stronger than the phonon dissipationComment: 26 pages with 13 figures, based on Chapter 3 of the Master thesis of the first author defended at IPICyT, San Luis Potosi, Mx, on 22nd of February 2006, similar to the published version [Fig. 5 left out but contains the Appendix figure

    Power Series Solution for Solving Nonlinear Burgers-Type Equations

    Get PDF
    Power series solution method has been traditionally used to solve ordinary and partial linear differential equations. However, despite their usefulness the application of this method has been limited to this particular kind of equations. In this work we use the method of power series to solve nonlinear partial differential equations. The method is applied to solve three versions of nonlinear time-dependent Burgers-type differential equations in order to demonstrate its scope and applicability

    Density-matrix functional theory of the Hubbard model: An exact numerical study

    Full text link
    A density functional theory for many-body lattice models is considered in which the single-particle density matrix is the basic variable. Eigenvalue equations are derived for solving Levy's constrained search of the interaction energy functional W, which is expressed as the sum of Hartree-Fock energy and the correlation energy E_C. Exact results are obtained for E_C of the Hubbard model on various periodic lattices. The functional dependence of E_C is analyzed by varying the number of sites, band filling and lattice structure. The infinite one-dimensional chain and one-, two-, or three-dimensional finite clusters with periodic boundary conditions are considered. The properties of E_C are discussed in the limits of weak and strong electronic correlations, as well as in the crossover region. Using an appropriate scaling we observe a pseudo-universal behavior which suggests that the correlation energy of extended systems could be obtained quite accurately from finite cluster calculations. Finally, the behavior of E_C for repulsive (U>0) and attractive (U<0) interactions are contrasted.Comment: Phys. Rev. B (1999), in pres

    Morphology and thermal stability of alf3 on Cu(100) thin films

    Get PDF
    Se estudió el crecimiento de películas epitaxiales ultra-delgadas de fluoruro de aluminio en Cu (100) mediante una combinación de técnicas experimentales de física de superficies. La deposición a temperatura ambiente resulta en la decoración de escalones seguida por la formación de islas dendríticas bidimensionales que coalescen para formar películas porosas. Las películas ultra-delgadas (de hasta dos monocapas de espesor) resultan morfológicamente inestables al calentar; parte de la película deja de mojar la superficie del sustrato a alrededor de 430 K con la formación de islas tridimensionales y dejando expuesta un área extensa de la superficie de Cu. En cambio, películas de varios nanómetros de espesor son estables hasta temperaturas cercanas a los 730 K cuando ocurre la desorción molecular. El efecto de la irradiación electrónica también ha sido caracterizado mediante diferentes técnicas espectroscópicas; encontrando que incluso dosis de irradiación reducidas de electrones pueden producir una descomposición significativa del fluoruro de aluminio, resultando en la liberación de moléculas de flúor y la formación de aluminio metálico. Estas características hacen del fluoruro de aluminio un material interesante para aplicaciones en espintrónica.Fil: Ruano Sandoval, Gonzalo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Moreno López, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Passeggi, Mario Cesar Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Vidal, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Ferron, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Niño, M. A.. Universidad Autónoma de Madrid; EspañaFil: Miranda, R.. Universidad Autónoma de Madrid; EspañaFil: de Miguel, J. J.. Universidad Autónoma de Madrid; Españ

    Designing lattice structures with maximal nearest-neighbor entanglement

    Full text link
    In this work, we study the numerical optimization of nearest-neighbor concurrence of bipartite one and two dimensional lattices, as well as non bipartite two dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non optimized systems. In the case of one dimensional chains the concurrence is maximized when the system begins to dimerize, i.e. it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions and that quantum entanglement cannot be freely shared between many objects (monogamy property). Moreover, the optimization of concurrence in two-dimensional bipartite and non bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations. This behavior is again related to the monogamy property.Comment: 18 pages, 10 figure

    Field analysis of solar PV-based collective systems for rural electrification.

    Get PDF
    This article analyses the long-term performance of collective off-grid photovoltaic (PV) systems in rural areas. The use of collective PV systems for the electrification of small medium-size villages in developing countries has increased in the recent years. They are basically set up as stand-alone installations (diesel hybrid or pure PV) with no connection with other electrical grids. Their particular conditions (isolated) and usual installation places (far from commercial/industrial centers) require an autonomous and reliable technology. Different but related factors affect their performance and the energy supply; some of them are strictly technical but others depend on external issues like the solar energy resource and users’ energy and power consumption. The work presented is based on field operation of twelve collective PV installations supplying the electricity to off-grid villages located in the province of Jujuy, Argentina. Five of them have PV generators as unique power source while other seven include the support of diesel groups. Load demand evolution, energy productivity and fuel consumption are analyzed. Besides, energy generation strategies (PV/diesel) are also discussed

    All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Full text link
    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of 2.49±0.01-2.49\pm0.01 prior to a break at (45.7±0.1(45.7\pm0.1) TeV, followed by an index of 2.71±0.01-2.71\pm0.01. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review
    corecore