161 research outputs found

    Evidence for a rapid decrease in Pluto's atmospheric pressure revealed by a stellar occultation in 2019

    Full text link
    We report observations of a stellar occultation by Pluto on 2019 July 17. A single-chord high-speed (time resolution =2= 2\,s) photometry dataset was obtained with a CMOS camera mounted on the Tohoku University 60 cm telescope (Haleakala, Hawaii). The occultation light curve is satisfactorily fitted to an existing Pluto's atmospheric model. We find the lowest pressure value at a reference radius of r=1215 kmr = 1215~{\rm km} among those reported after 2012, indicating a possible rapid (approximately 215+4%21^{+4}_{-5} \% of the previous value) pressure drop between 2016 (the latest reported estimate) and 2019. However, this drop is detected at a 2.4σ2.4\sigma level only and still requires confirmation from future observations. If real, this trend is opposite to the monotonic increase of Pluto's atmospheric pressure reported by previous studies. The observed decrease trend is possibly caused by ongoing N2{\rm N_2} condensation processes in the Sputnik Planitia glacier associated with an orbitally driven decline of solar insolation, as predicted by previous theoretical models. However, the observed amplitude of the pressure decrease is larger than the model predictions.Comment: 7 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    Cluster Multi-spacecraft Determination of AKR Angular Beaming

    Full text link
    Simultaneous observations of AKR emission using the four-spacecraft Cluster array were used to make the first direct measurements of the angular beaming patterns of individual bursts. By comparing the spacecraft locations and AKR burst locations, the angular beaming pattern was found to be narrowly confined to a plane containing the magnetic field vector at the source and tangent to a circle of constant latitude. Most rays paths are confined within 15 deg of this tangent plane, consistent with numerical simulations of AKR k-vector orientation at maximum growth rate. The emission is also strongly directed upward in the tangent plane, which we interpret as refraction of the rays as they leave the auroral cavity. The narrow beaming pattern implies that an observer located above the polar cap can detect AKR emission only from a small fraction of the auroral oval at a given location. This has important consequences for interpreting AKR visibility at a given location. It also helps re-interpret previously published Cluster VLBI studies of AKR source locations, which are now seen to be only a subset of all possible source locations. These observations are inconsistent with either filled or hollow cone beaming models.Comment: 5 pages, 4 figures. Geophys. Res. Letters (accepted

    Vlasov-Maxwell, self-consistent electromagnetic wave emission simulations in the solar corona

    Full text link
    1.5D Vlasov-Maxwell simulations are employed to model electromagnetic emission generation in a fully self-consistent plasma kinetic model for the first time in the solar physics context. The simulations mimic the plasma emission mechanism and Larmor drift instability in a plasma thread that connects the Sun to Earth with the spatial scales compressed appropriately. The effects of spatial density gradients on the generation of electromagnetic radiation are investigated. It is shown that 1.5D inhomogeneous plasma with a uniform background magnetic field directed transverse to the density gradient is aperiodically unstable to Larmor-drift instability. The latter results in a novel effect of generation of electromagnetic emission at plasma frequency. When density gradient is removed (i.e. when plasma becomes stable to Larmor-drift instability) and a lowlow density, super-thermal, hot beam is injected along the domain, in the direction perpendicular to the magnetic field, plasma emission mechanism generates non-escaping Langmuir type oscillations which in turn generate escaping electromagnetic radiation. It is found that in the spatial location where the beam is injected, the standing waves, oscillating at the plasma frequency, are excited. These can be used to interpret the horizontal strips observed in some dynamical spectra. Quasilinear theory predictions: (i) the electron free streaming and (ii) the beam long relaxation time, in accord with the analytic expressions, are corroborated via direct, fully-kinetic simulation. Finally, the interplay of Larmor-drift instability and plasma emission mechanism is studied by considering densedense electron beam in the Larmor-drift unstable (inhomogeneous) plasma. http://www.maths.qmul.ac.uk/~tsiklauri/movie1.mpg * http://www.maths.qmul.ac.uk/~tsiklauri/movie2.mpg * http://www.maths.qmul.ac.uk/~tsiklauri/movie3.mpgComment: Solar Physics (in press, the final, accepted version

    Brass-texture induced grain structure evolution in room temperature rolled ODS copper

    Get PDF
    Currently, advanced ODS copper alloy is under study as a potential fusion material providing good mechanical properties. In this work, in order to develop a high performance ODS copper containing 0.5 wt% Y2O3 oxide particles, the effect of room temperature rolling and subsequent annealing on the grain structure evolution, texture development and tensile properties are studied using EBSD, TEM and tensile tests. Microstructure evolution studies show the grain structure coarsens by enhancing the Brass texture during increase of rolling reduction and a unique single crystal-like brass-texture deformed structure is achieved after 80% rolling reduction. We found the deformation mechanism of partial slip by a/6 ⟨211⟩ by dislocations facilitated by the pinning of a/2 ⟨101⟩ perfect dislocations through fine oxide particles is responsible for formation of Brass texture during room temperature rolling. Furthermore, the recrystallization of ODS copper retards to high temperature of ~700 °C and shows a fine-grained microstructure with different orientations of Goss, Brass, S and Copper. Evaluation of microstructure-mechanical properties of the recrystallized samples expresses that the bimodal grain size distribution at 800 °C for 30 min offers a good tensile strength-ductility (UTS: 491 MPa, elt: 19%) at ambient temperature

    Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application

    Get PDF
    Advanced oxide dispersion strengthened copper alloys are promising structural materials for application in divertor system of future fusion reactors due to high irradiation resistance, high thermal conductivity, and good mechanical properties. In this study, a new ODS copper including 0.42wt%Y2O3 nanosized oxide particles wasdeveloped successfully by mechanical alloying method using addition of 1 wt% Stearic acid in Ar atmosphere.Mechanical alloying resulted in decrease of crystallite size to 28 nm in concurrent with increment of dislocation density and hardness to the saturated level of × −1.7 10 m15 2 and 226HV0.1 after 48 h milling, respectively.Consolidated ODS copper by SPS and then hot roll-annealing at 900 °C/60 min showed an average grain size of 1.1 μm with a near random texture. Furthermore, TEM observations demonstrated fine semicoherent Y2O3 oxide particles distributed with a misfit parameter (δ) of 0.17 in copper matrix with an average size of 10.8 nm andinterparticle spacing of 152 nm. Finally, tensile test evaluation determined comparable mechanical properties of the annealed ODS copper (Cu-0.42wt%Y2O3) with Glidcop-Al25 including a yield strength of 272 MPa and total elongation of 12%, by two mechanisms of grain boundary strengthening and oxide particle strengthening

    Deafening silence? Marxism, international historical sociology and the spectre of Eurocentrism

    Get PDF
    Approaching the centenary of its establishment as a formal discipline, International Relations today challenges the ahistorical and aspatial frameworks advanced by the theories of earlier luminaries. Yet, despite a burgeoning body of literature built on the transdisciplinary efforts bridging International Relations and its long-separated nomothetic relatives, the new and emerging conceptual frameworks have not been able to effectively overcome the challenge posed by the ‘non-West’. The recent wave of international historical sociology has highlighted possible trajectories to problematise the myopic and unipolar conceptions of the international system; however, the question of Eurocentrism still lingers in the developing research programmes. This article interjects into the ongoing historical materialist debate in international historical sociology by: (1) conceptually and empirically challenging the rigid boundaries of the extant approaches; and (2) critically assessing the postulations of recent theorising on ‘the international’, capitalist states-system/geopolitics and uneven and combined development. While the significance of the present contributions in international historical sociology should not be understated, it is argued that the ‘Eurocentric cage’ still occupies a dominant ontological position which essentially silences ‘connected histories’ and conceals the role of inter-societal relations in the making of the modern states-system and capitalist geopolitics
    corecore