1,455 research outputs found

    Methodology for the comparative assessment of the Satellite Power System (SPS) and alternative technologies

    Get PDF
    The energy systems concerned are the satellite power system, several coal technologies, geothermal energy, fission, fusion, terrestrial solar systems, and ocean thermal energy conversion. Guidelines are suggested for the characterization of these systems, side-by-side analysis, alternative futures analysis, and integration and aggregation of data. A description of the methods for assessing the technical, economic, environmental, societal, and institutional issues surrounding the development of the selected energy technologies is presented

    Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign

    Get PDF
    Despite turbulence being a fundamental transport process in the boundary layer, the capability of current numerical models to represent it is undermined by the limits of the adopted assumptions, notably that of local equilibrium. Here we leverage the potential of extensive observations in determining the variability in turbulence dissipation rate (ϵ). These observations can provide insights towards the understanding of the scales at which the major assumption of local equilibrium between generation and dissipation of turbulence is invalid. Typically, observations of ϵ require time- and labor-intensive measurements from sonic and/or hot-wire anemometers. We explore the capability of wind Doppler lidars to provide measurements of ϵ. We refine and extend an existing method to accommodate different atmospheric stability conditions. To validate our approach, we estimate ϵ from four wind Doppler lidars during the 3-month XPIA campaign at the Boulder Atmospheric Observatory (Colorado), and we assess the uncertainty of the proposed method by data intercomparison with sonic anemometer measurements of ϵ. Our analysis of this extensive dataset provides understanding of the climatology of turbulence dissipation over the course of the campaign. Further, the variability in ϵ with atmospheric stability, height, and wind speed is also assessed. Finally, we present how ϵ increases as nocturnal turbulence is generated during low-level jet events.</p

    Validation of turbulence intensity as simulated by the Weather Research and Forecasting model off the US northeast coast

    Get PDF
    Turbulence intensity (TI) is often used to quantify the strength of turbulence in wind energy applications and serves as the basis of standards in wind turbine design. Thus, accurately characterizing the spatiotemporal variability in TI should lead to improved predictions of power production. Nevertheless, turbulence measurements over the ocean are far less prevalent than over land due to challenges in instrumental deployment, maintenance, and operation. Atmospheric models such as mesoscale (weather prediction) and large-eddy simulation (LES) models are commonly used in the wind energy industry to assess the spatial variability of a given site. However, the TI derivation from atmospheric models has not been well examined. An algorithm is proposed in this study to realize online calculation of TI in the Weather Research and Forecasting (WRF) model. Simulated TI is divided into two components depending on scale, including sub-grid (parameterized based on turbulence kinetic energy (TKE)) and grid resolved. The sensitivity of sea surface temperature (SST) on simulated TI is also tested. An assessment is performed by using observations collected during a field campaign conducted from February to June 2020 near the Woods Hole Oceanographic Institution Martha's Vineyard Coastal Observatory. Results show that while simulated TKE is generally smaller than the lidar-observed value, wind speed bias is usually small. Overall, this leads to a slight underestimation in sub-grid-scale estimated TI. Improved SST representation subsequently reduces model biases in atmospheric stability as well as wind speed and sub-grid TI near the hub height. Large TI events in conjunction with mesoscale weather systems observed during the studied period pose a challenge to accurately estimating TI from models. Due to notable uncertainty in accurately simulating those events, this suggests summing up sub-grid and resolved TI may not be an ideal solution. Efforts in further improving skills in simulating mesoscale flow and cloud systems are necessary as the next steps.</p

    ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa

    Get PDF
    The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for AmrZ regulation of biofilm formation and chronicity

    Microscopic Views of Martian Soils and Evidence for Incipient Diagenesis

    Get PDF
    Mars landed missions returned im-ages at increasingly higher spatial resolution (Table 1). These images help to constrain the microstructure of Martian soils, i.e. the grain-by-grain association of chemistry and mineralogy with secondary properties, such as albedo, color, magnetic properties, and mor-phology (size, shape, texture). The secondary charac-teristics are controlled by mineralogical composition as well as the geo-setting (transport and weathering modes, e.g. water supply, pH, atmospheric properties, exposure to radiation, etc.). As of today this association is poorly constrained. However, it is important to un-derstand soil-forming processes on the surface of Mars. Here we analyze high-resolution images of soils re-turned by different landed missions. Eventually these images must be combined with other types of data (chemistry and mineralogy at small spatial scale) to nail down the microstructure of Martian soils

    Search for the exotic Ξ(1860)\Xi^{--}(1860) Resonance in 340GeV/c Σ\Sigma^--Nucleus Interactions

    Full text link
    We report on a high statistics search for the Ξ(1860)\Xi^{--}(1860) resonance in Σ\Sigma^--nucleus collisions at 340GeV/c. No evidence for this resonance is found in our data sample which contains 676000 Ξ\Xi^- candidates above background. For the decay channel Ξ(1860)Ξπ\Xi^{--}(1860) \to \Xi^-\pi^- and the kinematic range 0.15<xF<<x_F<0.9 we find a 3σ\sigma upper limit for the production cross section of 3.1 and 3.5 μ\mub per nucleon for reactions with carbon and copper, respectively.Comment: 5 pages, 4 figures, modification of ref. 43 and 4

    Observations of the geology and geomorphology of the 1999 Marsokhod test site

    Get PDF
    The Marsokhod rover returned data from six stations that were used to decipher the geomorphology and geology of a region not previously visited by members of the geomorphology field team. Satellite images and simulated descent images provided information about the regional setting. The landing zone was on an alluvial apron flanking a mountain block to the west and playa surface to the east. Rover color images, infrared spectra analysis of the mountains, and the apron surface provided insight into the rock composition of the nearby mountains. From the return data the geomorphology team interpreted the region to consist of compressionally deformed, ancient marine sediments and igneous rocks exposed by more recent extensional tectonics. Unconsolidated alluvial materials blanket the lower flanks of the mountains. An ancient shoreline cut into alluvial material marks a high stand of water during a past, wetter climate period. Playa sediments floor a present-day, seasonally, dry lake. Observations made by the rover using panoramic and close-up (hand specimens—scale) image data and color scene data confirmed the presence of boulders, cobbles, and fines of various provinces. Rover traverses to sites identified as geologically distinct, such as a fan, channel, shoreline, and playa, provided useful clues to the geologic interpretations. Analysis of local rocks was given context only through comparison with distant geologic features. These results demonstrated the importance of a multifaceted approach to site interpretation through comparison of interpretations derived by differing geologic techniques

    Schools and civil society : corporate or community governance

    Get PDF
    School improvement depends upon mediating the cultural conditions of learning as young people journey between their parochial worlds and the public world of cosmopolitan society. Governing bodies have a crucial role in including or diminishing the representation of different cultural traditions and in enabling or frustrating the expression of voice and deliberation of differences whose resolution is central to the mediation of and responsiveness to learning needs. A recent study of governing bodies in England and Wales argues that the trend to corporatising school governance will diminish the capacity of schools to learn how they can understand cultural traditions and accommodate them in their curricula and teaching strategies. A democratic, stakeholder model remains crucial to the effective practice of governing schools. By deliberating and reconciling social and cultural differences, governance constitutes the practices for mediating particular and cosmopolitan worlds and thus the conditions for engaging young people in their learning, as well as in the preparation for citizenship in civil society

    Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars

    Get PDF
    We report maps of the concentrations of H, Si, Cl, K, Fe, and Th as determined by the Gamma Ray Spectrometer (GRS) on board the 2001 Mars Odyssey Mission for ±∼45° latitudes. The procedures by which the spectra are processed to yield quantitative concentrations are described in detail. The concentrations of elements determined over the locations of the various Mars landers generally agree well with the lander values except for Fe, although the mean of the GRS Fe data agrees well with that of Martian meteorites. The water-equivalent concentration of hydrogen by mass varies from about 1.5% to 7.5% (by mass) with the most enriched areas being near Apollinaris Patera and Arabia Terra. Cl shows a distribution similar to H over the surface except that the Cl content over Medusae Fossae is much greater than elsewhere. The map of Fe shows enrichment in the northern lowlands versus the southern highlands. Silicon shows only very modest variation over the surface with mass fractions ranging from 19% to 22% over most of the planet, though a significant depletion in Si is noted in a region west of Tharsis Montes and Olympus Mons where the Si content is as low as 18%. K and Th show a very similar pattern with depletions associated with young volcanic deposits and enrichments associated with the TES Surface Type-2 material. It is noted that there appears to be no evidence of significant globally distributed thick dust deposits of uniform composition. Copyright 2007 by the American Geophysical Union
    corecore