29 research outputs found

    Towards a better classification of unclear eruptive variables: the cases of V2492 Cyg, V350 Cep, and ASASSN-15qi

    Get PDF
    Eruptive variables are young stars that show episodic variations of brightness: EXors/FUors variations are commonly associated with enhanced accretion outbursts occurring at intermittent cadence of months/years (EXors) and decades/centuries (FUors). Variations that can be ascribed to a variable extinction along their line of sight are instead classified as UXors. We aim at investigating the long-term photometric behaviour of three sources classified as eruptive variables. We present data from the archival plates of the Asiago Observatory relative to the fields where the targets are located. For the sake of completeness we have also analysed the Harvard plates of the same regions that cover a much longer historical period, albeit at a lower sensitivity, however we are only able to provide upper limits. A total of 273 Asiago plates were investigated, providing a total of more than 200 magnitudes for the three stars, which cover a period of about 34 yr between 1958 and 1991. We have compared our data with more recently collected literature data. Our plates analysis of V2492 Cyg provides historical upper limits that seem not to be compatible with the level of the activity monitored during the last decade. Therefore, recently observed accretion phenomena could be associated with the outbursting episodes, more than repetitive obscuration. While a pure extinction does not seem the only mechanism responsible for the ASASSN-15qi fluctuations, it can account quite reasonably for the recent V350 Cep variations.Comment: 12 pages, accepted by A&

    Solar differential rotation in the period 1964 - 2016 determined by the Kanzelh\"ohe data set

    Full text link
    The main aim of this work is to determine the solar differential rotation by tracing sunspot groups during the period 1964-2016, using the Kanzelh\"ohe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images. Two procedures for the determination of the heliographic positions were applied: an interactive procedure on the KSO sunspot drawings (1964 - 2008, solar cycles nos. 20 - 23) and an automatic procedure on the KSO white light images (2009 - 2016, solar cycle no. 24). For the determination of the synodic angular rotation velocities two different methods have been used: a daily shift (DS) method and a robust linear least-squares fit (rLSQ) method. Afterwards, the rotation velocities had to be converted from synodic to sidereal, which were then used in the least-squares fitting for the solar differential rotation law. For the test data from 2014, we found the rLSQ method for calculating rotational velocities to be more reliable than the DS method. The best fit solar differential rotation profile for the whole time period is ω(b)\omega(b) = (14.47 ±\pm 0.01) - (2.66 ±\pm 0.10) sin2b\sin^2b (deg/day) for the DS method and ω(b)\omega(b) = (14.50 ±\pm 0.01) - (2.87 ±\pm 0.12) sin2b\sin^2b (deg/day) for the rLSQ method. A barely noticeable north - south asymmetry is observed for the whole time period 1964 - 2016 in the present paper. Rotation profiles, using different data sets (e.g. Debrecen Photoheliographic Data, Greenwich Photoheliographic Results), presented by other authors for the same time periods and the same tracer types, are in good agreement with our results. Therefore, the KSO data set is suitable for the investigation of the long-term variabilities in the solar rotation profile

    Symbiotic stars on Asiago archive plates. I

    Full text link
    The rich plate archive of the Asiago observatory has been searched for plates containing the symbiotic stars AS 323, Ap 3-1, CM Aql, V1413 Aql (=AS 338), V443 Her, V627 Cas (=AS 501) and V919 Sgr. The program objects have been found on 602 plates, where their brightness has been estimated against the UBVRI photometric sequences calibrated by Henden and Munari (2000, A&AS 143, 343). AS 323 is probably eclipsing, with a preliminary P=197.6 day period. If confirmed, it would be the shortest orbital period known among symbiotic stars. CM Aql does not seem to undergo a series of outbursts, its lightcurve being instead modulated by a large amplitude sinusoidal variation with a P~1058 day period. V627 Cas presents a secular trend in agreement with the possible post-AGB nature of its cool component.Comment: A&A in pres

    Historical light curve and search for previous outbursts of Nova KT Eridani (2009)

    Get PDF
    Context. Nova Eridani (2009) caught the eye of the nova community due to its fast decline from maximum, which was initially missed, and its subsequent development in the radio and X-ray wavelengths. This system also exhibits properties similar to those of the much smaller class of recurrent novae; themselves potential progenitors of Type Ia Supernovae. Aims. We aim to determine the nature and physical parameters of the KT Eri progenitor system. Methods. We searched the Harvard College Observatory archive plates for the progenitor of KT Eri to determine the nature of the system, particularly the evolutionary stage of the secondary.We used the data obtained to search for any periodic signal and the derived luminosity to estimate a recurrence timescale. Furthermore, by comparing the colours of the quiescent system on a colour-magnitude diagram we may infer the nature of the secondary star. Results. We identified the progenitor system of KT Eri and measured a quiescent magnitude of = 14.7 \pm 0.4. No previous outburst was found. However, we suggest that if the nova is recurrent it should be on a timescale of centuries. We find a periodicity at quiescence of 737 days which may arise from reflection effects and/or eclipses in the central binary. The periodicity and the quiescence magnitude of the system suggest that the secondary star is evolved and likely in, or ascending, the Red Giant Branch. A second period is evident at 376 days which has a sinusoidal like light curve. Furthermore, the outburst amplitude of ~ 9 magnitudes is inconsistent with those expected for fast classical novae (~ 17 magnitudes) which may lend further support for an evolved secondary. (Abridged)Comment: 6 pages, 5 figures, accepted for publication in A&

    Optical photometric and spectral study of the new FU Orionis object V2493 Cygni (HBC 722)

    Get PDF
    Aims. We present new results from optical photometric and spectroscopic observations of the eruptive pre-main sequence star V2493 Cyg (HBC 722). The object has continued to undergo significant brightness variations over the past few months and is an ideal target for follow-up observations. Methods. We carried out CCD BVRI photometric observations in the field of V2493 Cyg (“Gulf of Mexico”) from August 1994 to April 2012, i.e. at the pre-outburst states and during the phases of the outburst. We acquired high, medium, and low resolution spectroscopy of V2493 Cyg during the outburst. To study the pre-outburst variability of the target and construct its historical light curve, we searched for archival observations in photographic plate collections. Both CCD and photographic observations were analyzed using 15 comparison stars in the field of V2493 Cyg. Results. The pre-outburst photographic and CCD photometric observations of V2493 Cyg show low-amplitude light variations typical of T Tauri stars. The recent photometric data show a slow light decrease from October 2010 to June 2011 followed by an increase in brightness that continued until early 2012. The spectral observations of V2493 Cyg are typical of FU Orionis stars absorption spectra with strong P Cyg profiles of Hα and Na I D lines. On the basis of photometric monitoring performed over the past two years, the spectral properties at the maximal light, as well as the shape of long-term light curves, we confirm that the observed outburst of V2493 Cyg is of FU Orionis type

    Symbiotic stars on Asiago archive plates. II

    Get PDF
    The Asiago photographic archive has been searched for plates containing the symbiotic stars Hen 2-468, QW Sge, LT Del, V407 Cyg, K 3-9, V335 Vul, FG Ser and Draco C-1. A total of 635 plates imaging the program stars have been found and the brightness estimated using the Henden & Munari (2000) UBVRI photometric sequences. These historical data have allowed for the first time the determination of the orbital periods of Hen 2-468 (774 days) and QW Sge (390.5 days), a significant improvement in the orbital period of LT Del (465.6 days) and for V407 Cyg an evaluation of the Mira's pulsation period and complex lightcurve shape in the red (R and I bands). Some previously unknown outbursts have been discovered too. (Paper I: Munari et al. 2001, A&A 370, 503)Comment: A&A, in pres

    A Comparison of Solar Cycle Variations in the Equatorial Rotation Rates of the Sun's Subsurface, Surface, Corona, and Sunspot Groups

    Full text link
    Using the Solar Optical Observing Network (SOON) sunspot-group data for the period 1985-2010, the variations in the annual mean equatorial-rotation rates of the sunspot groups are determined and compared with the known variations in the solar equatorial-rotation rates determined from the following data: i) the plasma rotation rates at 0.94Rsun, 0.95Rsun,...,1.0Rsun measured by Global Oscillation Network Group (GONG) during the period 1995-2010, ii) the data on the soft X-ray corona determined from Yohkoh/SXT full disk images for the years 1992-2001, iii) the data on small bright coronal structures (SBCS) which were traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the period 1998-2006, and iv) the Mount Wilson Doppler-velocity measurements during the period 1986-2007. A large portion (up to approximate 30 deg latitude) of the mean differential-rotation profile of the sunspot groups lies between those of the internal differential-rotation rates at 0.94Rsun and 0.98Rsun.The variation in the yearly mean equatorial-rotation rate of the sunspot groups seems to be lagging that of the equatorial-rotation rate determined from the GONG measurements by one to two years.The amplitude of the latter is very small.The solar-cycle variation in the equatorial-rotation rate of the solar corona closely matches that determined from the sunspot-group data.The variation in the equatorial-rotation rate determined from the Mount Wilson Doppler-velocity data closely resembles the corresponding variation in the equatorial-rotation rate determined from the sunspot-group data that included the values of the abnormal angular motions (> 3 deg per day) of the sunspot groups. Implications of these results are pointed out.Comment: 22 pages, 10 figures, accepted by Solar Physic

    Morpho-kinematical modelling of Nova Eridani 2009 (KT Eri)

    Get PDF
    Modelling the morphology of a nova outburst provides valuable information on the shaping mechanism in operation at early stages following the outburst. We performed morphokinematical studies, using shape, of the evolution of the Hα line profile following the outburst of the nova KT Eridani. We applied a series of geometries in order to determine the morphology of the system. The best fit morphology was that of a dumbbell structure with a ratio between the major to minor axis of 4:1, with an inclination angle of 58+6−7 degrees and a maximum expansion velocity of 2800±200 km s−1. Although, we found that it is possible to define the overall structure of the system, the radial density profile of the ejecta is much more difficult to disentangle. Furthermore, morphology implied here may also be consistent with the presence of an evolved secondary as suggested by various authors

    Reconstructing Historical Light Curves of Symbiotic Stars and Novae

    No full text
    We reconstructed photometric histories of symbiotic stars and novae from direct inspection and measurement of photographic plates preserved at historical archives. We have completed the digging of the rich Asiago archive, and have started working on the Harvard plate stack, while other plate collections should be added soon. For homogeneity, we use the same UBV RCIC photometric comparison sequences used in current CCD observations. This data harvest has permitted the discovery of past undetected outbursts and secular trends, or to derive previously unknown orbital periods and recurrence times, which are essential to constrain the nature of these capricious and variegated active binaries

    CH Cygni 1987-89: The inactive state as a precursor to the new outburst

    No full text
    In order to help answering the question generally posed for symbiotic stars: are the apparently inactive periods quiescent at all, or should they be regarded merely as a transition between adjacent outbursts, we tried to establish correlation between the subtle phenomena in the time evolution of the cool giant's photosphere and emission line profiles of the symbiotic star CH Cygni during the period 1987-89. Optical spectra of this star in its inactive state taken at the Haute Provence Observatory as well as the spectra of late type giant's of the same spectral type have been used. The comparison of the results obtained suggests that the time evolution of the physical parameters of CH Cyg reflect the symbiotic phenomena rather than the intrinsic variability of the cool component. The time behaviour of the Balmer emission line profiles rules out the general validity of the established models. An acceptable model valid at least for the observed period has been proposed. According to it, an envelope of variable optical thickness surrounds the hot component. The development of its inner radius, of Hα \rm H \alpha and Hβ \rm H \beta line profiles and of the λ5007 [OIII] \lambda5007~\rm [OIII] nebular line leads to the conclusion that the inactive state is not stationary, but is gradually evolving in time toward the new activity of the star
    corecore