182 research outputs found

    Sarcomere Control Mechanisms and the Dynamics of the Cardiac Cycle

    Get PDF
    This review focuses on recent developments in the molecular mechanisms by which Ca activates cardiac sarcomeres and how these mechanisms play out in the cardiac cycle. I emphasize the role of mechanisms intrinsic to the sarcomeres as significant determinants of systolic elastance and ventricular stiffening during ejection. Data are presented supporting the idea that processes intrinsic to the thin filaments may promote cooperative activation of the sarcomeres and be an important factor in maintaining and modifying systolic elastance. Application of these ideas to translational medicine and rationale drug design forms an important rationale for detailed understanding of these processes

    Use of a decoy peptide to purify p21 activated kinase-1 in cardiac muscle and identification of ceramide-related activation

    Get PDF
    The p21 activated kinase-1 (Pak1) is a serine-threonine protein kinase directly activated by Cdc42 and Rac1. In cardiac myocytes, Pak1 activation leads to dephosphorylation of cTnI and C-protein through upregulation of phosphatase-2A (PP2A). Pak1 activity is directly correlated with its autophosphorylation, which occurs upon binding to the small GTPases and to some small organic molecules as well. In this report, we describe a novel method for rapid purification of endogenous Pak1 from bovine ventricle muscle. The method is simple and easy to carry out. The purified Pak1 demonstrated autophosphorylation in vitro that was enhanced by D-erythro-sphingosine-1, N-acetyl-D-erythro-sphingosine (C2-ceramide), and N-hexanoyl-D-erythro-sphingosine (C6-ceramide). Dihydro-L-threo-sphingosine (saphingol) also had some effect on Pak1 autophosphorylation. The method we developed provides a useful tool to study Pak1 activity and regulation in the heart. Moreover, our results indicate a potential role of the sphingolipids as unique signaling molecules inducing a direct activation of Pak1 that may modulate different cardiac functions

    Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C

    Get PDF
    Our previous studies demonstrated a relation between glutathionylation of cardiac myosin binding protein C (cMyBP-C) and diastolic dysfunction in a hypertensive mouse model stressed by treatment with salt, deoxycorticosterone acetate, and unilateral nephrectomy. Although these results strongly indicated an important role for S-glutathionylation of myosin binding protein C as a modifier of myofilament function, indirect effects of other post-translational modifications may have occurred. Moreover, we did not determine the sites of thiol modification by glutathionylation. To address these issues, we developed an in vitro method to mimic the in situ S-glutathionylation of myofilament proteins and determined direct functional effects and sites of oxidative modification employing Western blotting and mass spectrometry. We induced glutathionylation in vitro by treatment of isolated myofibrils and detergent extracted fiber bundles (skinned fibers) with oxidized glutathione (GSSG). Immuno-blotting results revealed increased glutathionylation with GSSG treatment of a protein band around 140 kDa. Using tandem mass spectrometry, we identified the 140 kDa band as cMyBP-C and determined the sites of glutathionylation to be at cysteines 655, 479, and 627. Determination of the relation between Ca(2+)-activation of myofibrillar acto-myosin ATPase rate demonstrated an increased Ca(2+)-sensitivity induced by the S-glutathionylation. Force generating skinned fiber bundles also showed an increase in Ca-sensitivity when treated with oxidized glutathione, which was reversed with the reducing agent, dithiothreitol (DTT). Our data demonstrate that a specific and direct effect of S-glutathionylation of myosin binding protein C is a significant increase in myofilament Ca(2+)-sensitivity. Our data also provide new insights into the functional significance of oxidative modification of myosin binding protein C and the potential role of domains not previously considered to be functionally significant as controllers of myofilament Ca(2+)-responsiveness and dynamics

    The curious role of sarcomeric proteins in control of diverse processes in cardiac myocytes

    Get PDF
    Introduction Relatively recent developments in our understanding of sarcomeric proteins have expanded their role from the home of molecular motors generating force and shortening to a cellular organelle fully integrated in the control of structural, electrical, mechanical, chemical, and metabolic homeostasis. Even so, in some cases these diverse functions of sarcomeric proteins appear to remain a curiosity, not fully appreciated in the analysis of major controllers of cardiac function. This attitude toward the function of sarcomeric proteins in cardiac myocytes is summarized in the following definition of “curiosity,” which seems particularly apropos: “meddlesome; thrusting oneself into and taking an active part in others’ affairs.” We focus in this Perspective on how sarcomeric proteins function in integration with membrane channels and transporters in control of cardiac dynamics, especially in adrenergic control of cardiac function. Understanding these mechanisms at the level of cardiac sarcomeres took on special significance with the identification of mutations in sarcomeric proteins as the most common cause of familial hypertrophic and dilated cardiomyopathies. These mutations commonly lead to structural, electrical, and metabolic remodeling and to sudden death. These disorders indicate a critical role of processes at the level of the sarcomeres in homeostatic control of cardiac energetics, dynamics, and structure. Yet, control of Ca2+ delivery to and removal from the myofilaments has dominated discussions of mechanisms regulating cardiac contractility. We first provide an alternative perspective in which rate processes at the level of the sarcomeres appear to be dominant during the rise and maintenance of systolic elastance and of isovolumic relaxation. A discussion of established adrenergic mechanisms and newly understood anti-adrenergic mechanisms controlling sarcomere response to Ca2+ follows and expands on this perspective

    Solution Structures of the C-Terminal Domain of Cardiac Troponin C Free and Bound to the N-Terminal Domain of Cardiac Troponin I

    Get PDF
    The N-terminal domain of cardiac troponin I (cTnI) comprising residues 33−80 and lacking the cardiac-specific amino terminus forms a stable binary complex with the C-terminal domain of cardiac troponin C (cTnC) comprising residues 81−161. We have utilized heteronuclear multidimensional NMR to assign the backbone and side-chain resonances of Ca2+-saturated cTnC(81−161) both free and bound to cTnI(33−80). No significant differences were observed between secondary structural elements determined for free and cTnI(33−80)-bound cTnC(81−161). We have determined solution structures of Ca2+-saturated cTnC(81−161) free and bound to cTnI(33−80). While the tertiary structure of cTnC(81−161) is qualitatively similar to that observed free in solution, the binding of cTnI(33−80) results mainly in an opening of the structure and movement of the loop region between helices F and G. Together, these movements provide the binding site for the N-terminal domain of cTnI. The putative binding site for cTnI(33−80) was determined by mapping amide proton and nitrogen chemical shift changes, induced by the binding of cTnI(33−80), onto the C-terminal cTnC structure. The binding interface for cTnI(33−80), as suggested from chemical shift changes, involves predominantly hydrophobic interactions located in the expanded hydrophobic pocket. The largest chemical shift changes were observed in the loop region connecting helices F and G. Inspection of available TnC sequences reveals that these residues are highly conserved, suggesting a common binding motif for the Ca2+/Mg2+-dependent interaction site in the TnC/TnI complex

    Altered coronary artery function, arteriogenesis and endothelial YAP signaling in postnatal hypertrophic cardiomyopathy

    Get PDF
    Introduction: Hypertrophic cardiomyopathy (HCM) is a cardiovascular genetic disease caused largely by sarcomere protein mutations. Gaps in our understanding exist as to how maladaptive sarcomeric biophysical signals are transduced to intra- and extracellular compartments leading to HCM progression. To investigate early HCM progression, we focused on the onset of myofilament dysfunction during neonatal development and examined cardiac dynamics, coronary vascular structure and function, and mechano-transduction signaling in mice harboring a thin-filament HCM mutation.Methods: We studied postnatal days 7–28 (P7–P28) in transgenic (TG) TG-cTnT-R92Q and non-transgenic (NTG) mice using skinned fiber mechanics, echocardiography, biochemistry, histology, and immunohistochemistry.Results: At P7, skinned myofiber bundles exhibited an increased Ca2+-sensitivity (pCa50 TG: 5.97 ± 0.04, NTG: 5.84 ± 0.01) resulting from cTnT-R92Q expression on a background of slow skeletal (fetal) troponin I and α/β myosin heavy chain isoform expression. Despite the transition to adult isoform expressions between P7–P14, the increased Ca2+- sensitivity persisted through P28 with no apparent differences in gross morphology among TG and NTG hearts. At P7 significant diastolic dysfunction was accompanied by coronary flow perturbation (mean diastolic velocity, TG: 222.5 ± 18.81 mm/s, NTG: 338.7 ± 28.07 mm/s) along with localized fibrosis (TG: 4.36% ± 0.44%, NTG: 2.53% ± 0.47%). Increased phosphorylation of phospholamban (PLN) was also evident indicating abnormalities in Ca2+ homeostasis. By P14 there was a decline in arteriolar cross-sectional area along with an expansion of fibrosis (TG: 9.72% ± 0.73%, NTG: 2.72% ± 0.2%). In comparing mechano-transduction signaling in the coronary arteries, we uncovered an increase in endothelial YAP expression with a decrease in its nuclear to cytosolic ratio at P14 in TG hearts, which was reversed by P28.Conclusion: We conclude that those early mechanisms that presage hypertrophic remodeling in HCM include defective biophysical signals within the sarcomere that drive diastolic dysfunction, impacting coronary flow dynamics, defective arteriogenesis and fibrosis. Changes in mechano-transduction signaling between the different cellular compartments contribute to the pathogenesis of HCM

    Research priorities in hypertrophic cardiomyopathy: report of a Working Group of the National Heart, Lung, and Blood Institute.

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a myocardial disorder characterized by left ventricular (LV) hypertrophy without dilatation and without apparent cause (ie, it occurs in the absence of severe hypertension, aortic stenosis, or other cardiac or systemic diseases that might cause LV hypertrophy). Numerous excellent reviews and consensus documents provide a wealth of additional background.1–8 HCM is the leading cause of sudden death in young people and leads to significant disability in survivors. It is caused by mutations in genes that encode components of the sarcomere. Cardiomyocyte and cardiac hypertrophy, myocyte disarray, interstitial and replacement fibrosis, and dysplastic intramyocardial arterioles characterize the pathology of HCM. Clinical manifestations include impaired diastolic function, heart failure, tachyarrhythmia (both atrial and ventricular), and sudden death. At present, there is a lack of understanding of how the mutations in genes encoding sarcomere proteins lead to the phenotypes described above. Current therapeutic approaches have focused on the prevention of sudden death, with implantable cardioverter defibrillator placement in high-risk patients. But medical therapies have largely focused on alleviating symptoms of the disease, not on altering its natural history. The present Working Group of the National Heart, Lung, and Blood Institute brought together clinical, translational, and basic scientists with the overarching goal of identifying novel strategies to prevent the phenotypic expression of disease. Herein, we identify research initiatives that we hope will lead to novel therapeutic approaches for patients with HCM

    A novel approach to improve cardiac performance: cardiac myosin activators

    Get PDF
    Decreased systolic function is a central factor in the pathogenesis of heart failure, yet there are no safe medical therapies to improve cardiac function in patients. Currently available inotropes, such as dobutamine and milrinone, increase cardiac contractility at the expense of increased intracellular concentrations of calcium and cAMP, contributing to increased heart rate, hypotension, arrhythmias, and mortality. These adverse effects are inextricably linked to their inotropic mechanism of action. A new class of pharmacologic agents, cardiac myosin activators, directly targets the kinetics of the myosin head. In vitro studies have demonstrated that these agents increase the rate of effective myosin cross-bridge formation, increasing the duration and amount of myocyte contraction, and inhibit non-productive consumption of ATP, potentially improving myocyte energy utilization, with no effect on intracellular calcium or cAMP. Animal models have shown that this novel mechanism increases the systolic ejection time, resulting in improved stroke volume, fractional shortening, and hemodynamics with no effect on myocardial oxygen demand, culminating in significant increases in cardiac efficiency. A first-in-human study in healthy volunteers with the lead cardiac myosin activator, CK-1827452, as well as preliminary results from a study in patients with stable chronic heart failure, have extended these findings to humans, demonstrating significant increases in systolic ejection time, fractional shortening, stroke volume, and cardiac output. These studies suggest that cardiac myosin activators offer the promise of a safe and effective treatment for heart failure. A program of clinical studies are being planned to test whether CK-1827452 will fulfill that promise
    corecore