558 research outputs found

    Saturation physics and angular correlations at RHIC and LHC

    Full text link
    We investigate the angular correlation between pions and photons produced in deuteron-gold collisions at RHIC and proton-lead collisions at LHC using the Color Glass Condensate formalism and make predictions for the dependence of the production cross section on the angle between the pion and photon at different rapidities and transverse momenta. Measuring this dependence would shed further light on the role of high gluon density and saturation dynamics at RHIC and LHC.Comment: 2-column EPJ C format, requires svjour.cls and svepj.clo; 4 pages, 4 figure

    Vector potential versus colour charge density in low-x evolution

    Get PDF
    We reconsider the evolution equations for multigluon correlators derived in hep-ph/9709432. We show how to derive these equations directly in terms of vector potentials (or colour field strength) avoiding the introduction of the concept of colour charge density in the intermediate steps. The two step procedure of deriving the evolution of the charge density correlators followed by the solution of classical equations for the vector potentials is shown to be consistent with direct derivation of evolution for vector potentials. In the process we correct some computational errors of hep-ph/9709432 and present the corrected evolution equations which have a somewhat simpler appearance.Comment: 15 pages, 1 figure, changes made referee report, to be published in Phys. Rev

    From RHIC to EIC: Nuclear Structure Functions

    Full text link
    We study the nuclear structure function F2AF_2^A and its logarithmic derivative in the high energy limit (small xx region) using the Color Glass Condensate formalism. In this limit the structure function F2F_2 depends on the quark anti-quark dipole-target scattering cross section NF(xbj,rt,bt)N_F (x_{bj}, r_t, b_t). The same dipole cross section appears in single hadron and hadron-photon production cross sections in the forward rapidity region in deuteron (proton)-nucleus collisions at high energy, i.e. at RHIC and LHC. We use a parameterization of the dipole cross section, which has successfully been used to describe the deuteron-gold data at RHIC, to compute the nuclear structure function F2AF_2^A and its log Q2Q^2 derivative (which is related to gluon distribution function in the double log limit). We provide a quantitative estimate of the nuclear shadowing of F2AF_2^A and the gluon distribution function in the kinematic region relevant to a future Electron-Ion Collider.Comment: 13 pages, 6 figure

    Quark production in high energy proton-nucleus collisions

    Full text link
    In this note, we discuss the problem of quark-antiquark pair production in the framework of the color glass condensate. The cross-section can be calculated in closed form for the case of proton-nucleus collisions, where the proton can be considered to be a dilute object. We find that kt-factorization is broken by rescattering effects.Comment: 6 pages, 3 figures, based on talks given at Hard Probes 2004 by H. Fujii and F. Geli

    Shadowing of gluons in perturbative QCD: A comparison of different models

    Get PDF
    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that in the kinematic region appropriate to RHIC experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to LHC, there is a sizable difference between predictions of the different models.Comment: 11 pages, 4 figure

    The Color Glass Condensate: an overview

    Full text link
    The Color Glass Condensate is a theory of the dynamical properties of partons in the Regge limit of QCD: x_{\rm Bj}\to 0,, Q^2 >> \Lambda_{\rm QCD}^2={\rm fixed} and the center of mass energy squared s\to \infty. We provide a brief introduction to the theoretical ideas underlying the Color Glass Condensate and discuss the application of these ideas to high energy scattering in QCD.Comment: 8 pages, Plenary talk at Hard Probes 2004, Ericeira, Portugal, Nov.4th-10th, 200

    Prompt photons at RHIC

    Get PDF
    We calculate the inclusive cross section for prompt photon production in heavy-ion collisions at RHIC energies (s=130\sqrt{s}=130 GeV and s=200\sqrt{s}=200 GeV) in the central rapidity region including next-to-leading order, O(αemαs2)O(\alpha_{em}\alpha_s^2), radiative corrections, initial state nuclear shadowing and parton energy loss effects. We show that there is a significant suppression of the nuclear cross section, up to ∌30\sim 30% at s=200\sqrt{s}=200 GeV, due to shadowing and medium induced parton energy loss effects. We find that the next-to-leading order contributions are large and have a strong ptp_t dependence.Comment: 9 pages, 5 figures, expanded discussion of the K facto
    • 

    corecore