220 research outputs found

    Performance Evaluation of HL-LHC Crab Cavity Prototypes in a CERN Vertical Test Cryostat

    Get PDF
    Three proof-of-principle compact crab cavity designs have been fabricated in bulk niobium and cold tested at their home labs, as a first validation step towards the High Luminosity LHC project. As a cross check, all three bare cavities have been retested at CERN, in order to cross check their performance, and cross-calibrate the CERN SRF cold test facilities. While achievable transverse deflecting voltage is the key performance indicator, secondary performance aspects derived from multiple cavity monitoring systems are also discussed. Temperature mapping profiles, quench detection, material properties, and trapped magnetic flux effects have been assessed, and the influence on performance discussed. The significant effort invested in developing expertise in preparation and testing of these crab cavities has already been fruitful for all partners, and more is to come within this ongoing program

    Myogenesis modelled by human pluripotent stem cells: a multi‐omic study of Duchenne myopathy early onset

    Get PDF
    International audienceBackground Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5000 male births. Symptoms appear in early childhood, with a diagnosis made mostly around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise-even asymptomatically-is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. Methods We have used both human tissue-derived myoblasts and human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis and compared their differentiation dynamics with that of healthy control cells by a comprehensive multi-omic analysis at seven time points. Results were strengthened with the analysis of isogenic CRISPR-edited human embryonic stem cells and through comparisons against published transcriptomic and proteomic datasets from human DMD muscles. The study was completed with DMD knockdown/rescue experiments in hiPSC-derived skeletal muscle progenitor cells and adenosine triphosphate measurement in hiPSC-derived myotubes. Results Transcriptome and miRnome comparisons combined with protein analyses demonstrated that hiPSC differentiation (i) leads to embryonic/foetal myotubes that mimic described DMD phenotypes at the differentiation endpoint and (ii) homogeneously and robustly recapitulates key developmental steps-mesoderm, somite, and skeletal muscle. Starting at the somite stage, DMD dysregulations concerned almost 10% of the transcriptome. These include mitochondrial genes whose dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of DMD skeletal muscle cells that begins early during myogenesis. All the omics data are available online for exploration through a graphical interface at https://muscle-dmd.omics.ovh/. Conclusions Our data argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin roles during muscle development. This hiPSC model of skeletal muscle differentiation offers the possibility to explore these functions as well as find earlier DMD biomarkers and therapeutic targets

    Pressure-induced valence anomaly in TmTe probed by resonant inelastic x-ray scattering

    Get PDF
    The pressure-induced valence transition in TmTe was investigated by resonant inelastic x-ray scattering at the Tm L(3) edge, a powerful probe of the rare-earth valent state. The data are analyzed within the Anderson impurity model which yields key parameters such as the Tm 4f-5d hybridization. In addition to the general tendency of the f electrons towards delocalization, we find a plateau in both the Tm valence and hybridization pressure dependences between 4.3 and 6.5 GPa which is interpreted in terms of an n-channel Kondo (NCK) screening process. This behavior is at odds with the usually continuous, single-channel Kondo-like f delocalization while being supported by the seminal calculations of the NCK temperature in Tm ion by Saso et al. Our study raises the interesting possibility that an NCK effect realized in a compressed mixed-valent f system could impede the concomitant electron delocalization

    Myogenesis modelled by human pluripotent stem cells uncovers Duchenne muscular dystrophy phenotypes prior to skeletal muscle commitment

    Get PDF
    Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise - even asymptomatically - is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. In this study, we have used human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis, and compared their differentiation dynamics to healthy control cells by a comprehensive multi-omics analysis. Transcriptome and miRnome comparisons combined with protein analyses at 7 time points demonstrate that hiPSC differentiation 1) mimics described DMD phenotypes at the differentiation endpoint; and 2) homogeneously and robustly recapitulates key developmental steps - mesoderm, somite, skeletal muscle - which offers the possibility to explore dystrophin functions and find earlier disease biomarkers. Starting at the somite stage, mitochondrial gene dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of skeletal muscle cells that starts early during myogenesis. In sum, our data strongly argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin functions during muscle development

    Preclinical Evaluation of a Lentiviral Vector for Huntingtin Silencing.

    Get PDF
    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from a polyglutamine expansion in the huntingtin (HTT) protein. There is currently no cure for this disease, but recent studies suggest that RNAi to downregulate the expression of both normal and mutant HTT is a promising therapeutic approach. We previously developed a small hairpin RNA (shRNA), vectorized in an HIV-1-derived lentiviral vector (LV), that reduced pathology in an HD rodent model. Here, we modified this vector for preclinical development by using a tat-independent third-generation LV (pCCL) backbone and removing the original reporter genes. We demonstrate that this novel vector efficiently downregulated HTT expression in vitro in striatal neurons derived from induced pluripotent stem cells (iPSCs) of HD patients. It reduced two major pathological HD hallmarks while triggering a minimal inflammatory response, up to 6 weeks after injection, when administered by stereotaxic surgery in the striatum of an in vivo rodent HD model. Further assessment of this shRNA vector in vitro showed proper processing by the endogenous silencing machinery, and we analyzed gene expression changes to identify potential off-targets. These preclinical data suggest that this new shRNA vector fulfills primary biosafety and efficiency requirements for further development in the clinic as a cure for HD

    Myogenesis modelled by human pluripotent stem cells uncovers Duchenne muscular dystrophy phenotypes prior to skeletal muscle commitment

    Get PDF
    Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise - even asymptomatically - is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. In this study, we have used human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis, and compared their differentiation dynamics to healthy control cells by a comprehensive multi-omics analysis. Transcriptome and miRnome comparisons combined with protein analyses at 7 time points demonstrate that hiPSC differentiation 1) mimics described DMD phenotypes at the differentiation endpoint; and 2) homogeneously and robustly recapitulates key developmental steps - mesoderm, somite, skeletal muscle - which offers the possibility to explore dystrophin functions and find earlier disease biomarkers. Starting at the somite stage, mitochondrial gene dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of skeletal muscle cells that starts early during myogenesis. In sum, our data strongly argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin functions during muscle development

    Itinerant effects and enhanced magnetic interactions in Bi-based multilayer cuprates

    Get PDF
    The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature Tc increases with the number of CuO2 planes n in the crystal structure. We compare the magnetic excitation spectrum of Bi2+xSr2−xCuO6+δ (Bi-2201) and Bi2Sr2Ca2Cu3O10+δ (Bi-2223), with n = 1 and 3, respectively, using Cu L3-edge resonant inelastic x-ray scattering. Near the antinodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the Tc vs n scaling. In contrast, the nodal direction exhibits very strongly damped, almost nondispersive excitations. We argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature
    corecore