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Huntington’s disease (HD) is an autosomal dominant neurode-
generative disorder resulting fromapolyglutamine expansion in
the huntingtin (HTT) protein. There is currently no cure for this
disease, but recent studies suggest that RNAi to downregulate
the expression of both normal and mutant HTT is a promising
therapeutic approach. We previously developed a small hairpin
RNA (shRNA), vectorized in an HIV-1-derived lentiviral vector
(LV), that reduced pathology in an HD rodent model. Here, we
modified this vector for preclinical development by using a tat-
independent third-generation LV (pCCL) backbone and
removing the original reporter genes. We demonstrate that
this novel vector efficiently downregulated HTT expression
in vitro in striatal neurons derived from induced pluripotent
stem cells (iPSCs) of HD patients. It reduced two major patho-
logical HD hallmarks while triggering a minimal inflammatory
response, up to 6 weeks after injection, when administered by
stereotaxic surgery in the striatum of an in vivo rodent HD
model. Further assessment of this shRNA vector in vitro showed
proper processing by the endogenous silencing machinery, and
we analyzed gene expression changes to identify potential off-
targets. These preclinical data suggest that this new shRNA vec-
tor fulfills primary biosafety and efficiency requirements for
further development in the clinic as a cure for HD.
Received 22 March 2017; accepted 7 May 2017;
http://dx.doi.org/10.1016/j.omtm.2017.05.001.

Correspondence: Nicole Déglon, Lausanne University Hospital (CHUV), Labo-
ratory of Cellular and Molecular Neurotherapies (LNCM), Pavillon 3, Avenue de
Beaumont, 1011 Lausanne, Switzerland.
E-mail: nicole.deglon@chuv.ch
INTRODUCTION
Huntington’s disease (HD) (MIM 143100) is a neurodegenerative dis-
order inherited in an autosomal dominantmannermarked by progres-
sive loss of neurons, particularly in the striatum. The HD-causing
mutation is aCAG repeat expansion located in exon 1 of the huntingtin
(HTT) gene that is translated into an expanded polyglutamine stretch
in the mutant-HTT isoform.1,2 The HTT protein is involved in neuro-
genesis and the specification of neuronal and non-neuronal lineages,3,4

vesicle transport,5–7 potassium-based cyclic AMP (cAMP) chemo-
taxis,8 and interactions with transcription factors.9 HD initially results
in involuntary choreic movements that progressively evolve toward
rigidity and dystonia, cognitive impairment with dementia, and neuro-
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psychiatric deficits, leading to death after 15–20 years. There is
currently no cure or way to stop the progression of HD. Thus, patient
care focuses on themanagement of symptoms and improvement of the
quality of life.10–13 The HDmutation is an obvious target for therapeu-
tic intervention based on gene silencing or genome editing, because it is
at the top of all pathological cascades. The most pragmatic approach,
supported by the dominant nature of HD inheritance, consists, how-
ever, of silencing both alleles of the HTT gene. HTT gene silencing in
the brain reducesHTT transcript levels, decreases the formation of in-
clusions, and improves behavioral deficits in HD animal models.14–17

Studies in HTT knockout (KO) mice clearly demonstrate that HTT is
important for embryonic development.18–20 However, HTT depletion
in the adult brain (after 4 months of age)21 and inhibition of wild-type
(WT) HTT expression in rodents does not appear to cause detectable
dysfunction, suggesting that the risk/benefit ratio of long-term HTT
silencing in the adult human brain would favor the lowering of both
WT and mutant HTT isoforms in HD patients.17,22–24

RNAi is based on naturally occurring and conserved molecular
machinery that induces gene silencing.25 Exogenous and artificial
RNAi (small hairpin RNA [shRNA]) are vectorized to ensure contin-
uous and long-term expression in the CNS.26 Potency and specificity
of an shRNA depend onmultiple parameters, including target mRNA
abundance,27–32 turnover or cellular localization,33 the presence of
specific RNA binding proteins,34 and the structure, length, and inter-
nal stability of the shRNA itself.35–39

Mechanistic studies of vectorized shRNA have paved the way
for powerful preclinical proof-of-concept studies that support the
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Figure 1. Schematic Representation of LVs Used in

the Study

(A) Lentiviral vector used to overexpress the first

171 (htt171-82Q) amino acids of the HTT protein with

82 CAG. (B) Second-generation lentiviral vector used

to encode shHTT6. Here, the H1-shHTT6 was cloned

into the 30 SIN LTR of an HIV-1 LV (called SIN-shHTT6) including a GFP reporter gene to allow the tracking of infected cells (C). For clinical purposes, the third-

generation LV (called pCCL-shHTT6), encoding the same shHTT6, is cloned in a tat-independent pCCL backbone.
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therapeutic relevance of HTT-lowering strategies.14–17,22–24,40–49

However, assessment of the biosafety of the gene therapy product is
still a major challenge for clinical application in HD. Issues raised
by shRNA include the potential lack of specificity (e.g., large number
of off-target mRNAmolecules can create a “dilution effect” that limits
on-target shRNA-lowering activity30,32), adverse effects caused by
lowering the expression of off-target genes, cytotoxicity of the vehicle
itself50 (e.g., through the interferon response),51–53 or overload of the
cellular microRNA (miRNA) machinery, in particular of Exportin-5
and Argonaute-2 by excessive shRNA production (e.g., when the
shRNA is driven by a strong polymerase II promoter).54

In a previous study in rodents, we developed a lentiviral vector ex-
pressing an shRNA targeting a sequence common to human and
mouse in exons 3 and 4 ofHTT, named shHTT6.17 The 19 nt passen-
ger and guide strand are connected by a 9 nt loop and are expressed
from the H1 polymerase III promoter.17,26 This shRNA was designed
to have the passenger strand at the 50 end of the hairpin (right-hand
loop, R-type shRNAs).55,56 The H1 driving shHTT6 expression is
active both in neurons and in astrocytes, two cell types affected in
HD. H1-shHTT6 was originally cloned into the 30 self-inactivating
(SIN)-LTR (long terminal repeat) of an HIV-1-derived lentiviral
vector (LV) containing a reporter gene (LacZ or GFP). This design
was ideal for facilitating the identification of transduced cells for
experimental purposes. Here, we selected a third-generation tat-
independent LV (pCCL) backbone57 for preclinical development
and further address the biosafety profile of this vector in neurons
derived from HD-patient-specific induced pluripotent stem cells
(iPSCs), following administration of LV-shHTT6 in the striatum of
rodent.

RESULTS
Development of a Third-Generation LV Encoding shRNA

Targeting the Human WT and Mutant HTT and Evaluation of

Silencing Efficiency In Vitro

The expression cassette containing the H1 polymerase III promoter
and the shHTT6 target sequence was cloned into the lentiviral
pCCL backbone57 (hereafter named pCCL-shHTT6) (Figure 1). We
evaluated the ability of pCCL-shHTT6 to silence humanHTT expres-
sion in vitro by qRT-PCR of infected HEK293T cells. The cells were
co-infected with a vector encoding the first 171 amino acids of human
HTT with 82 polyglutamines (Htt171-82Q) and the LV (SIN and
pCCL backbones) directed against the luciferase reporter gene
(shRNA targeting the luciferase mRNA [shLUC]) or shHTT6. The
pCCL-shHTT6 reduced human mutantHTT expression by 62% rela-
tive to cells infected with Htt171-82Q combined with the correspond-
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ing pCCL-shLUC (Mann-Whitney U test, p < 0.05). The SIN-shHtt6
vector decreased HTT expression by 75.9% ± 14.0% (Mann-Whitney
U test, p < 0.05), consistent with our previous studies17 (Figure 2A).
We further compared the relative efficacy of these two constructs
by performing additional experiments in HEK293T cells, which
express WT human HTT. We quantified and used the number of
integrated copies of LV for the normalization of HTT silencing as
previously reported.58 Both vectors silenced the endogenous WT hu-
man HTT with comparable efficiency after normalization for vector
copy number (VCN) (Figure 2B). We observed a similar pattern in
three independent experiments (chi-square test, degrees of freedom
[df] = 47.54, 6; p < 0.0001).

Efficiency of pCCL-shHTT6 in Striatal Neurons Derived from

HD-iPSCs

We further evaluated the activity of the pCCL-shHTT6 LV using
human cultures enriched for medium spiny striatal neurons, derived
from HD-iPSCs, as a relevant in vitro experimental paradigm.59 Hu-
man striatal neuronal cultures with the HD mutation were produced
using an iPSC line derived from a patient carrying a 60 CAG triplet
expansion in one allele of the HTT gene.60,61 We first assessed the
telencephalic dorso-ventral identity of the neuronal precursor cells af-
ter 22 and 26 days in vitro (DIV22/26) by immunofluorescence stain-
ing for CTIP2, NKX2.1, and TBR1 (Figures 3A–3D). At DIV22,
90.2% ± 3.8% of cells were CTIP2+, an early marker of medium spiny
neurons62 (MSNs), whereas less than 0.3% ± 0.1% of cells expressed
NKX2.1, a transcription factor necessary for MGE development that
specifies the fate of non-striatal interneurons62–64 (Figures 3A and
3B). Similarly, at DIV26, 91.7% ± 3.7% of cells were CTIP2+, whereas
only 8.7% ± 0.5% of cells expressed TBR1, a T-box transcription
factor (TF) that plays a critical role in regulating the differentiation
and identity of deep-layer projection neurons in the developing
neocortex65–69 (Figures 3C and 3D). At DIV56, 72% ± 8.6% of cells
still expressed CTIP2 and 42.7% ± 4.9% of NeuN+ neuronal cells
co-expressed DARPP32 (PPP1R1B), an MSN-specific marker found
co-expressed with CTIP2, but not by other cell types within the adult
striatum70–72 (Figures 3E and 3F). Neuronal cultures enriched in
MSNs (CTIP2+/DARPP32+/MAP2+) (Figure 3G) included other
GABA+ neurons, such as Calretinin+ interneurons (Figure 3H), as
well as a small number of GFAP+ astroglial cells (Figure 3I).

These HD human striatal cells were infected at DIV36 with either
pCCL-shHTT6 or pCCL-shLUC (Figures 4A and 4B) as a control.
We have previously shown that under these experimental conditions
the transduction efficiency is >85% (unpublished data). The corre-
sponding mRNAs were extracted 15 days after transduction (at
17



Figure 2. Evaluation of the Efficiency of HTT Silencing by SIN and pCCL-

shHHT6 LVs In Vitro

(A) 293T cells were co-infected with 150 ng of LVs encoding Htt171-82Q and

shHTT6 or their respective negative control shRNA targeting luciferase, and cultured

for 5 days. qPCR analyses show that all vectors efficiently silenced the expression of

HTT. All values were normalized to b-actin and expressed as mean values ± SEM

(n = 3–4 for each group) (Mann-Whitney U test, *p < 0.05). (B) Normalization of HTT

expression by VCN shows similar levels of endogenous WT HTT silencing in 293T

cells infected with either SIN-shHTT6 or pCCL-shHTT6 (chi-square test, df = 47.54,

6; p < 0.0001). A representative result of three independent experiments is shown.
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DIV51) and analyzed by qRT-PCR and next generation sequencing.
qRT-PCR analyses show statistically significant knockdown of
HTT gene expression (71% ± 7% [SD]; p < 0.01; Figure 4C). This
result was confirmed by RNA sequencing (RNA-seq) data showing
a similar knockdown effect of shHTT6 (71%; p = 0.0138; Figure 4D)
on HTT transcript NM_002111. TaqMan qRT-PCR, based on SNP
rs362331,49,73 which is heterozygous in the HD-iPSC line, showed
that the allelic ratio was not altered by shHTT6 treatment (Fig-
ure 4E).74 These results indicate that the pCCL-shHTT6 targets
both the mutant and the WT HTT alleles in equal proportion.
RNA-seq expression of classical neuronal markers revealed no signif-
icant effect of shHTT6 on the neuronal phenotype of the culture.
The shHTT6/shLUC ratio remained close to 1.00 for MAP2 (0.90),
TUBB3 (0.77), SNAP25 (0.90), and SYP (0.92).

Efficiency of pCCL-shHTT6 In Vivo

We injected the HTT171-82Q vector in the striatum of adult mice
with either shHTT6 or shLUC in SIN or pCCL vectors to evaluate
therapeutic efficiency in vivo. The severity of HD pathology was eval-
uated histologically 8 weeks after injection. Notably, striatal lesions,
defined by the loss of DARPP-32 immunostaining, were almost
completely eliminated by both pCCL-shHTT6 (t test, p < 0.01) and
SIN-shHTT6 (sign test, p < 0.01): the size of the lesions was reduced
by approximately 90% relative to the respective controls. The slightly
lower loss of DARPP32 immunostaining in the control group (pCCL-
shLUC) compared with the HTT171-82Q group is probably due
to differences in the total dose of vector injected (400 ng versus
Molecu
200 ng of p24, respectively), which might have affected the kinetic
of the pathology. However, the number of ubiquitin (Ubi) aggregates,
used to follow misfolded HTT (correlation demonstrated in Drouet
et al.49), was similar in both groups. Finally, the number of HTT ag-
gregates was equally reduced by both SIN (t test, p < 0.001) and
pCCL-shHTT6 (t test, p < 0.0001) LVs (Figure 5). These results
demonstrate the robust efficiency of pCCL-shHTT6 in vivo.

Evaluation of the Biosafety of pCCL-H1-shHTT6

A major preclinical requisite is the demonstration of the biosafety of
the vector. We investigated several parameters that could lead to po-
tential side effects: (1) inappropriate synthesis and processing of the
shRNA, (2) preferential incorporation of the passenger versus guide
strand in the RNA-induced silencing complex (RISC), (3) off-target
effects caused by partial homology of the guide RNA with other tran-
scripts or pairing between the hexamer seed region and the 30 UTR of
transcripts (miRNA-like effects), (4) saturation of the endogenous
cellular machinery, and (5) inflammatory/immune responses.

Strand Bias and Synthesis and Processing of shHTT6 In Vitro

We first investigated the incorporation of the guide and passenger
strand in the RISC by the cellular machinery. Loading of the guide
strand of the shRNA is essential to maximize silencing activity and
minimize potential off-target effects. We used the psiCHECK-2 vec-
tor to monitor the incorporation of guide and passenger strands.75,76

The target sequences of the guide and passenger strands of the
shHTT6 were cloned downstream of the renilla luciferase transla-
tional stop codon. Target recognition and cleavage induce the degra-
dation of renilla luciferase-HTT fusion mRNA. Measurement of the
ratio between firefly and renilla luciferase activity is a convenient in-
dicator of shHTT6 guide and passenger strand activity. In this exper-
iment, the psiCHECK-2 reporter genes and pCCL-H1-shHTT6 were
co-transfected into HEK293T cells. Consistent with the silencing data
described above, pCCL-shHTT6 (t test, p < 0.01) and SIN-shHTT6
(Mann-Whitney U test, p = 0.051) efficiently reduced luciferase
expression with preferential loading of the guide strand (Figure 6A).

We extracted and sequenced small RNAs from infected HEK293T
cells to further analyze the processing of the shHTT6 guide strand.
Between 100,000 and 270,000 reads per sample (n = 3) were aligned
against the reference shHTT6 sequence (Figures 6B and 6C). The
distribution and percentage of aligned reads showed that 81% corre-
sponded to the guide strand of the shHTT6, confirming the
psiCHECK-2 data. We observed cleavage of the loop in the aligned
reads, in agreement with Dallas et al.,77 who showed that R-shRNAs
have a cleavable loop that generates a 50-phosphate at the 50 end of the
guide strand and that cleavage is necessary for optimum activity.

Identification of Possible shHTT6 Off-Targets

Several algorithms have been developed to design small interfering
RNAs (siRNAs) and analyze their potential off-targets.78–82 For
shHTT6, we first searched for transcripts (exon, BLAST) with partial
complementarity with the two strands and identified 15 and 5 human
sequences with two to four mismatches with the guide and passenger
lar Therapy: Methods & Clinical Development Vol. 5 June 2017 261
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Figure 3. Striatal Identity of HD-iPSC-Derived Neural

and Neuronal Derivatives

(A) Immunolabeling at day 22 of NKX2.1 (red) and CTIP2

(green) in neuronal precursor cultures obtained from

HD-iPSCs. (B) Quantification of NKX2.1- and CTIP2-ex-

pressing cells among all cells. (C) Immunolabeling at day

26 of TBR1 (red) and CTIP2 (green) in neuronal precursor

cultures obtained from HD-iPSCs. (D) Quantification

of TBR1- and CTIP2-expressing cells among all cells.

(E) Immunolabeling at day 56 of DARPP32 (red), CTIP2

(green), and NeuN (blue) in neuronal cultures obtained

from HD-iPSCs. (F) Quantification of DARPP32-express-

ing cells among NeuN-positive neurons and of CTIP2-

expressing cells among all cells. (G–I) Immunolabeling at

day 56 (21+35) of (G) DARPP32 (red), CTIP2 (green), and

MAP2 (blue); (H) Calretinin (red) and MAP2 (green); and (I)

GABA (red), GFAP (green), and MAP2 (blue) in neuronal

cultures obtained from HD-iPSCs. Scale bars, 100 mm.

Data are presented as the mean ± SEM. n = 3.
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strands, respectively (Table 1). In parallel, we performed an RNA-seq
analysis of mRNAs extracted from human striatal cultures derived
from HD-iPSCs at DIV51 transduced with pCCL-H1-shHTT6 or
shLUC lentivirus at DIV36. We identified 181 differentially expressed
genes in shHTT6-treated cells (fold change > 1.5; p < 0.01; Table S1).
Levels for none of the theoretical off-target transcripts mentioned
above were significantly altered following pCCL-H1-shHTT6 treat-
ment. Furthermore, we used the siSPOTR software to identify a list
of potential targets of the seed sequence of shHTT6 in the 30 UTR
of genes (“miR-like effect”) (Table S2). Again, the top 100 genes ob-
tained with siSPOTR were crossed with RNA-seq data from human
striatal cultures derived from HD-iPSCs treated with pCCL-H1-
shHTT6 or shLUC. Principal component analysis and heatmaps
(Figures 7A and 7B) of all expressed genes showed that shHTT6 treat-
ment accounted for 10.44% of the total variance of transcriptomic
profiles of the samples (with shHTT6 samples distinguished from
shLUC samples along the third principal component axis [PCA]).
Only three genes were present in both lists (KITLG, RAB3B, and
TULP4; Figure 7C), revealing a non-significant overlap between the
list of differentially expressed genes in shHTT6-treated human stria-
tal neurons and potential off-targets (p = 0.05, Fisher exact test).
Finally, we performed gene set enrichment analysis using the
262 Molecular Therapy: Methods & Clinical Development Vol. 5 June 2017
KEGG pathway enrichment list on our RNA-
seq data (Figure 7D). The KEGG database
(http://www.genome.jp/kegg/pathway.html)
provides a collection of manually drawn path-
ways on molecular interactions and networks
for biological interpretation and mapping of
transcriptomic datasets. Only five KEGG gene
sets were significantly enriched (Enrichment
score > 1.5; p < 0.05) in shHTT6-treated sam-
ples. We then entered our theoretical TOP100
off-target list as a distinct gene set to determine
whether it matched our RNA-seq data. The
TOP100 off-target gene set ranked only 12th and was not significantly
enriched in our samples (embryonic stem [ES] = 2.2; p = 0.11) (Fig-
ure 7D). Altogether, the data demonstrate the excellent overall safety
profile of pCCL-shHTT6.

In Vivo Evaluation of the Biosafety of Lentiviral-Delivered

shHTT6

Previous studies have reported serious toxic and even lethal ef-
fects54,83 caused by saturation of the endogenous silencing machinery
when the shRNA is under the control of a strong promoter (in partic-
ular, the U6 promoter). Liver failure and mortality were observed in
mice injected with different adeno-associated virus (AAV)-expressed
shRNAs, irrespective of hairpin length, sequence, or target transcript.
However, this cytotoxicity is relieved by the use of the weaker H1 pro-
moter.84 We therefore assessed the gene expression profile of repre-
sentative genes of the cellular miRNA machinery using custom
PCR arrays. Exportin-5 and Dicer-1 expression were not significantly
altered at the effective dose of 200 ng, up to 6 weeks after injection
(Table 2).

Therapeutic efficacy should not be compromised by an innate or
adaptive immune response following LV administration to the
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Figure 4. Quantification of HTT Knockdown by pCCL-shHTT6 Lentivirus in

Human Striatal Neurons Derived from HD-iPSCs

(A and B) Representative phase-contrast image of striatal neuronal culture derived

from HD-iPSCs at day 51 (15 days after transduction with pCCL-shLUC [A] or

pCCL-shHTT6 [B] lentivirus). (C) Relative HTTmRNA expression in striatal neuronal

cultures transduced or not (�) with pCCL-shHTT6 and pCCL-shLUC. Expression

levels are normalized to themean levels detected in pCCL-shLUC-transduced cells.

Values were compared for all groups by one-way ANOVA, and Dunnett’s multiple-

comparison test was used to determine the level of significance. (D) RNA-seq

expression data for HTT (NM_002111) expressed in reads per kilobase of transcript

per million mapped reads (RPKM). Values for both groups were compared using the

unpaired Student’s t test. (E) HTT allelic ratio expressed as the percentage of C or T

allele at SNP rs362331. *p < 0.05; **p < 0.01.

Figure 5. Evaluation of the Efficiency of HTT Silencing by SIN and pCCL-

shHHT6 LVs In Vivo

C57BL/6 mice were injected bilaterally in the striatum with 200 ng of LV encoding

Htt171-82Q and shHTT6 or their respective negative control shRNA targeting

luciferase. They were sacrificed 8 weeks later. (A) The size of the striatal lesion (ex-

pressed inmm3)was defined by the loss of DARPP-32 immunostaining, as illustrated

in the insert. (B) The total number of ubiquitin-positive aggregates was counted in

serial sections of the striatum, as illustrated in the insert. All values are expressed as

the means ± SEM (n = 7–9). Groups were compared using the t test except for the

comparison of lesion volume between Htt171-82Q and Htt171-82Q + SIN-shHTT6

for which the sign test was used (**p < 0.01; ***p < 0.001; ****p < 0.0001).
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striatum. We used ion exchange purified LV batches to reduce the
presence of contaminants that could potentially induce an inflamma-
tory/immune response. Striatal samples were collected after injection
of LVs at two doses (100 ng and 200 ng), either 24 hr later, to assess a
representative response to the vector, or 6 weeks after injection, likely
to reflect the response to the shHTT6 transgene.85–87 We added a
group injected with 200 ng of non-purified LV to examine the relative
contribution of contaminants produced during LV preparation (such
as cell debris or serum) to the response, and a positive control sample
from a mouse injected with a high dose of LV (1,000 ng, SIN-
shHTT6) to establish the range of a strong immune response. We
determined the profile of inflammatory gene expression using custom
Molecu
PCR arrays for intracellular receptors sensitive to double-stranded
RNA, such as Toll-like receptors (TLRs) 3, 7, 8, 9, PKR, and RIG-1
and several of their downstream effectors. For example, it has been
shown that the TLR3 response leads to interferon regulatory factor
3 (IRF-3) phosphorylation and nuclear factor kB (NF-kB) activation,
triggering the expression of inflammatory cytokines, such as tumor
necrosis factor (TNF) alpha, interleukin (IL)-6, and chemokines
(CCL-5, CCL-10). These, in turn, stimulate interferon (IFN) beta
and interferon-stimulated genes, such as 2050-oligoadenylate synthe-
tase (OAS1).88 Similarly, activation of the protein kinase PKR induces
multiple interferon response genes, such as OAS1.89 We also exam-
ined the expression of markers of cellular immune responses for
both the systemic system and CNS. Our study shows that striatal in-
jection of research grade LV was associated with slight upregulation
of several genes (namely MDA-5, a viral sensor, several downstream
effectors of the immune response, such as ISG20, STAT1 and STAT2,
OAS1, IFIT-1, and only one chemokine [Cxcl10]), 24 hr following
surgery (Table 2). However, very few genes remained upregulated
6 weeks later, such as IRF-7, IFIT-1, and IFIT-2. Moderate overex-
pression of F4/80, a marker for macrophages, and CD11b, a marker
for macrophages and microglia, appeared at this late time point. As
expected, purification of the LV batch reduced the immune reaction
associated with the injection, particularly shortly after injection in the
brain. Altogether, our data suggest that an effective dose of purified
shHTT6 LV is not associated with side effects in the brain.
lar Therapy: Methods & Clinical Development Vol. 5 June 2017 263
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Figure 6. Evaluation of Strand Bias and shHTT6 Processing In Vitro

(A) 293T cells were co-transfected with siRNA expression plasmids and a luciferase

reporter plasmid containing either their intended guide target sequence or their

unintended passenger target sequence. A DualGlo luciferase assay was performed

48 hr later. All values are expressed as the mean ± SEM (n = 4 for each group).

Results show preferential guide strand incorporation in the silencing machinery for

both SIN-shHTT6 (Mann-Whitney U test, p = 0.051) and pCCL-shHTT6 (t test, p <

0.01). (B) Distribution and percentage of small RNAs extracted from 293T cells in-

fected with pCCL-shHTT6. Small RNAs were sequenced and aligned against the
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DISCUSSION
Several novel therapeutic strategies are currently under development
to downregulate the expression of HTT as a treatment for HD. Yet, a
number of safety issues still have to be addressed to ensure long-term
beneficial effects for the patient, while minimizing potential adverse
events. Here, we optimized an LV encoding an shRNA targeting
HTT, which was evaluated in the striatum of HD transgenic mice
and neurons derived from HD iPSCs. We report not only a robust
reduction of two major pathological hallmarks for HD, but also a
minimal inflammatory response in the brain, proper cellular process-
ing of the shRNA, and a highly favorable on/off-target profile.

A correlation has been observed between siRNA efficacy and tran-
script abundance or turnover, with low-abundance and short-lived
mRNAs being less sensitive to siRNA treatment.27–32 In the present
study, we obtained similar levels of HTT silencing against exogenous
human mutant HTT expressed at a very high level17 (HEK293T cells
and adult mice) and endogenous WT and mutant HTT (HEK293T
cells and HD-iPSCs), confirming the potency of 19-nt-long shRNAs
(right and left types; R and L shRNAs).90 These shRNAs are processed
by a DICER-independent pathway, which has also been reported for
miR-451.91–95 This alternative Argonaute (Ago2)-mediated process-
ing induces guide-specific RNAi activity.96 This was confirmed by
sequencing, which showed preferential detection of the guide strand
and the processing of shHTT6 with the expected cleavage of the loop.

Aside from silencing efficiency, the biosafety of variousHTT silencing
approaches is paramount for guiding clinical development. Here, we
chose to design our siRNA into an LV encoding a short hairpin RNA
to simplify delivery via a unique stereotaxic surgery in the brain of pa-
tients. Transduction of neurons with LVs ensures long-term and
continuous expression of siRNAs in the affected brain region, in
contrast with repeated administrations necessary for treatment with
antisense nucleotides, peptides, nucleic acids, or siRNAs. However,
low Exportin-5 levels or the number of active RISCs in the brain
may increase susceptibility to adverse shRNA-induced saturation
effects and neurotoxicity.97–99 Here, we confirm that the weak H1
polymerase III promoter does not induce saturation of the miRNA
machinery (in particular, Exportin-5) or induce interferon response
and downstream effectors.51–53

We further addressed the safety of pCCL-shHTT6 silencing by inves-
tigating potential recognition and degradation of mRNA with imper-
fect complementarity in the coding region and 30 UTR of human
genes. None of the 20 human exons with partial homology with the
guide and passenger strand of shHTT6 were differentially expressed
shHTT6 sequence. (C) Schematic representation of shHTT6 processing. The

shRNA is transcribed in the nucleus of the infected cell and exported to the cyto-

plasm. Its loop is subsequently processed by a ribonuclease, generating a double-

stranded RNA. The guide antisense strand is then loaded onto the Argonaute (Ago2)

protein, a component of the RISC, whereas the passenger strand is cleaved and

ejected. HTT target mRNA associates with the guide strand in RISC, is cleaved, and

is subsequently degraded by cellular exonucleases. **p < 0.01.
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Table 1. List of Transcripts with a Partial Homology with the Guide and Passenger Strands of shHTT6

Sequence (50-30) Mismatches Position Name Reference

Transcripts with Partial Homology with shHTT6 Guide Strand50-AGCT TTGATGGATTCTAAT-30 HTT mRNA

AGTT TTCATGGATTCTAAT 2 exon 2
Homo sapiens chromosome 10 open reading
frame 61 (C10orf61)

NM_015631.1 and AK128834

AGCT GAGATGGATTCTATT 3 exon 2
Homo sapiens DEAH (Asp-Glu-Ala-His)
box polypeptide 8 (DHX8), mRNA

NM_004941.1 and BC038223

TGCT ATGATGAATTCTATT 4 exon-exon junction
Homo sapiens BRCA1 interacting protein
C-terminal helicase 1 (BRIP1), mRNA

NM_032043.1 and AF360549

GGCT TTCATAGATTCTATT 4 exon 1
Homo sapiens angiopoietin like 2
(ANGPTL2), mRNA

NM_012098.2

GGCT TTAATGAATTCTCAT 4 exon 2
Homo sapiens dual adaptor of phosphotyrosine
and 3-phosphoinositides (DAPP1), mRNA

NM_014395.1 and AF186022

GGCT TTGCTGGATTCTGCT 4 exon 2
Homo sapiens zinc finger protein 555
(ZNF555), mRNA

NM_152791.3 and AL832140

GGCT TTGCTGGATTCTGCT 4 exon 2
Homo sapiens zinc finger protein 57
(ZNF57), mRNA

NM_173480.1 and BX537601

GGCT TTGGTGGATTCTCAC 4 exon 1

Homo sapiens sema domain, immunoglobulin
domain (Ig), transmembrane domain (TM) and
short cytoplasmic domain, (semaphorin) 4F
(SEMA4F), mRNA

NM_004263.2

GCCT TTTATGGCTTCTAAT 4 exon 1 cDNA FLJ37369 fis, clone BRAMY2024545 AK094688

AGCT TATAAGGATTCTAAT 3 EST
UI-CF-FN0-afo-j-12-0-Ul.s1 UI-CF-FNO
Homo sapiens cDNA clone UI-CF-FNO-
afo-j-12-0-UI 3-, mRNA sequence

CA314011

TGCT TTGAGGGCTTCTAAT 3 exon 1
Homo sapiens cDNA FLJ90150 fis, clone
HEMBB1002039

AK074631

AGGA TTGATGGATTTTAAT 3 exon 1 full-length cDNA clone CS0DL008YM01 of B cells CR616012.1

Transcripts with Partial Homology with shHTT6 Passenger Strand50-ATTAGAATCCATCAAAGCT-30 HTT Antisense Sequence

ATAAGAATCGATCAAAGAT 3 exon 1
predicted: Homo sapiens KIAA0947 protein
(KIAA0947), mRNA

XM_029101.9

ATTAGAACCCATCTAAACT 3 exon 1
Homo sapiens CDNAFLJ30271 fis, clone
BRACE2002676

AK054833

AAAAGAATCCTTCAAAACT 4 exon 1 Homo sapiens ASAP (FLJ21159), mRNA NM_024826.1

AGTAGAATCCATCATAGAA 4 exon 1
Homo sapiens multiple myeloma susceptibility
mRNA sequence

AY094612

ACTAGTATGCATCAAAGCC 4 exon 1
Homo sapiens SET domain, bifurcated 1
(SETDB1), mRNA

NM_012432.2

The underlined text indicated the position of mismatched between the shHTT6 and the corresponding human genes.
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in differentiated HD-induced pluripotent stem (iPS) cultures. Cross-
evaluation of the top 100 candidates with shHTT6 seed sequences and
next generation sequencing (NGS) data fromHD-iPSCs show limited
overlap, demonstrating the specificity of shHTT6. Three genes were
present in both lists: KITLG, RAB3B, and TULP4. They were not
among the top differentially expressed genes (rank 46, 69, and 84)
or among the most highly ranked off-target candidates. We cannot
exclude that these gene expression changes are due to on-target
HTT silencing and the subsequent biological effects or variability in
the differentiation state or populations of various cultures. KEGG
analysis of differentially expressed genes identified pathways that
have been previously associated with HTT biology and revealed
that the gene set of off-target candidates is not enriched in treated
Molecu
samples.100–103 Altogether, the data demonstrate the excellent overall
safety profile of pCCL-shHTT6.

Our in vivo data also showed a transient and modest increase in
the expression of the viral sensor MDA-5 and several downstream ef-
fectors of the immune response 24 hr after surgery. Six weeks after in-
jection, only a few markers of resident microglia and macrophages
were still slightly elevated, with no obvious astrocyte activation. No
alterations of CD4 or CD8 mRNA were detected, suggesting the
absence of cell-mediated responses. We also observed no induction
of major cytokine or chemokine expression in the brain, despite re-
ports of interferon-mediated responses by others.89,104,105 Our data
are in accordance with studies showing that long-term expression
lar Therapy: Methods & Clinical Development Vol. 5 June 2017 265

http://www.moleculartherapy.org


Figure 7. RNA-Seq Transcriptomic Analyses of

pCCL-shHTT6 in HD-iPSC-Derived Human Striatal

Neurons

(A) PCA plot of PC1 versus PC2 versus PC3 of the tran-

scriptomic profile of HD-iPSC-derived striatal neurons

transduced with pCCL-shHTT6 or shLUC. (B) Hierarchical

clustering and heatmap analysis of RNA-seq data.

(C) Venn diagram depicting a non-significant overlap be-

tween the list of differentially expressed genes in shHTT6-

treated human striatal neurons and the top 100 genes of

the off-target list genes of shHTT6 (p = 0.05, Fisher exact

test). (D) Top 20 most enriched from the KEGG pathway

enrichment list (with TOP100 off-target list) in shHTT6-

treated neurons.

Molecular Therapy: Methods & Clinical Development
of shRNA, cloned in an miRNA backbone and vectorized in AAV,
triggered similarly mild immune responses.106,107

pCCL-shHTT6 induces global silencing of bothmutant andWTHTT
alleles. Thus, all HD patients could be treated with a single product. In
contrast, allele-specific silencing, based on SNPs to discriminate be-
tween the mutant and WT allele, is limited to a subset of HD pa-
tients.108 However, a delicate balance should be established between
downregulating mutant HTT sufficiently to alleviate disease pathol-
ogy, while preserving enough WT HTT to maintain its physiological
roles. EarlyHTT KOmouse models clearly demonstrated that HTT is
important for embryonic development because these mice die at em-
bryonic day 8.18–20 Nonetheless, inducible depletion of HTT in the
adult brain (after 4 months of age) does not cause any cerebral atro-
phy, neurodegeneration, or motor defects.21 Similarly, two studies in
266 Molecular Therapy: Methods & Clinical Development Vol. 5 June 2017
adult non-human primates also reported that
partial suppression (between 30% and 45%) of
WT HTT expression is well tolerated from
6 weeks up to 6 months after treatment with
AAV vectorized shRNAs.106,107 More recently,
studies using a CRISPR/Cas9 approach to inac-
tivate mutant HTT expression have reported
very encouraging results, but a neuropatholog-
ical assessment of therapeutic efficacy is still
awaiting.109,110 Here, pCCL-shHTT6 downre-
gulated human HTT expression in transduced
HEK293T cells and striatal neurons derived
from HD-iPSCs by approximately 60%–70%,
leaving both remaining mutant and WT HTT.
RNA-seq data also revealed that the recently
described antisense HTT transcript (HTT-
AS1)111 is barely detected in these human
neurons (below detection level in five of six
samples), and therefore does not interfere with
the silencing of HTT by pCCL-shHTT6. In an
HD mouse model, a single striatal injection
with pCCL-shHTT6 LV was sufficient to elimi-
nate the DARPP-32 lesion and almost abolish
the formation of Ubi-positive aggregates for
up to 6 weeks. Altogether, these data suggest that the level of HTT
suppression induced by pCCL-shHTT6 is therapeutically efficient
and should be safe in the long term. One challenge for the clinical
development of our approach is the scale-up to humans.We have pre-
viously shown that LV transduces 1–1.5� 106 neurons (50–60 mm3)
in the putamen of cynomolgus monkeys.112 However, the develop-
ment of LVs with retrograde properties,113 new injection proced-
ures,114 and connectome data115 provide new opportunities to target
specific and highly relevant sub-regions of the brain to maximize the
therapeutic benefit.

MATERIALS AND METHODS
Plasmids

pCCL-hPGK-nls-LacZ was kindly provided by Prof. Luigi
Naldini.116 The RRE-hPGK-nls-LacZ-30 LTR was replaced with the



Table 2. Evaluation of Expression Changes of Inflammatory Genes after Injection of LVs

24 hr Post-injection 6 Weeks Post-injection

100 ng 200 ng
Non-purified
200 ng

Positive
Control
1,000 ng 100 ng 200 ng

Non-purified
200 ng

UniGene RefSeq Symbol Description p Value Fold
Change

p Value Fold
Change

p Value Fold
Change

Fold
Change

p Value Fold
Change

p Value Fold
Change

p Value Fold
Change

RNA/DNA Sensors

Mm.33874 NM_126166.4 TLR3 toll-like receptor 3 0.1400 1.7 0.0770 2.4 0.1787 1.3 103.6 0.3996 1.20 0.0867 2.8 0.0743 2.0

Mm.23979 NM_133211.3 TLR7 toll-like receptor 7 0.3651 1.1 0.4514 �1.1 0.0170a �1.8 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm. 196676 NM_133212.2 TLR8 toll-like receptor 8 0.3642 1.1 0.4571 �1.1 0.0121a �2.0 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.44889 NM_031178 TLR9 toll-like receptor 9 0.1063 1.8 0.0720 2.6 0.0066a,b 2.0b 102.8 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.277250 NM_011871.2 PKR
protein kinase, interferon-
inducible double-stranded
RNA-dependent activator

0.8388 �1.0 0.5392 1.3 0.1463 �1.7 24.2 0.1151 2.36 0.6986 1.5 0.1891 2.1

Mm.296366 NM_009021.2 RIG-1
retinoic-acid-induced 1
transcript variant 1

0.7755 1.0 0.5436 1.1 0.6895 �1.2 71.4 0.3822 1.27 0.0750 2.7 0.2040 1.8

Mm.136224 NM_001164477.1 Ifihl
interferon induced with
helicase C domain 1 (MDA-5)

0.0883 1.9 0.0328a,b 3.6b 0.0040a,b 3.0b 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.222633 NM_145857.2 Nod2
nucleotide-binding
oligomerization domain
containing 2

0.1263 1.5 0.1076 1.9 0.0210a,b 2.0b 73.7 0.4061 1.13 0.0635 3.0 0.0873 1.8

Downstream Effectors of Immune Response

Mm.213003 NM_010851.2 Myd88
myeloid differentiation
primary response gene 88

0.3651 1.1 0.4092 1.0 0.4769 �1.3 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.149280 NM_173394.2 Ticam2
toll-like receptor adaptor
molecule 2 (TRIF)

0.3682 1.1 0.4568 �1.1 0.0113a,b �2.1 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.3960 NM_016849.3 IRF-3 interferon regulatory factor 3 0.3714 1.1 0.4037 1.1 0.0375a �1.7 110.9 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.3233 NM_016850.2 IRF-7 interferon regulatory factor 7 0.0079a,b 3.2 0.0505 7.6 0.0007a,b 3.7 9.4 0.3365 1.32 0.0404a 4.1 0.0613 2.2

Mm.322843 NM_020583.5 ISG20
interferon-stimulated protein
(Isg20), transcript variant 1

0.0174a,b 4.6 0.0082a,b 10.9 0.0001a,b 8.6 14.9 0.3468 1.28 0.0551 3.4 0.0441a,b 2.4b

Mm.256765 NM_008689.2 NF-kB1
nuclear factor kappa-B,
subunit 1

0.9617 1.0 0.2132 1.5 0.0642 1.8 22.8 0.1628 1.36 0.0920 2.3 0.0907 1.6

Mm.292547 NM_011198.3 PTSG
prostaglandin-endoperoxide
synthase 2

0.5842 1.2 0.3723 1.4 0.1611 1.6 60.3 0.4271 1.14 0.0892 2.8 0.0711 2.0

Mm.277406 NM_009283.3 STAT-1
signal transducer and
activator of transcription 1

0.0031a,b 3.0b 0.0001a,b 5.0 0.0005a,b 3.2 1.7 0.4792 1.24 0.0508 3.1 0.1650 1.4

Mm.293120 NM_019963.1 STAT-2
signal transducer and activator
of transcription 2

0.1185 3.3 0.0099a,b 4.5 0.0110a,b 2.8 2.3 0.0622 1.89 0.5128 1.2 0.1167 1.5

Mm.95479 NM_145209.3 2050OAS
20-50 oligoadenylate
synthetase-like 1

0.0440a 1.8 0.0178a,b 3.1 0.0022a,b 4.0 92.7 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.439751 NM_008331.3 IFIT-1
interferon-induced protein
with tetratricopeptide repeats 1

0.0602 4.2 0.0022a,b 10.5 0.0001a,b 8.8 4.9 0.3076 1.33 0.0337a 4.1 0.0402a 2.3

(Continued on next page)
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Table 2 Continued

24 hr Post-injection 6 Weeks Post-injection

100 ng 200 ng
Non-purified
200 ng

Positive
Control
1,000 ng 100 ng 200 ng

Non-purified
200 ng

UniGene RefSeq Symbol Description p Value Fold
Change

p Value Fold
Change

p Value Fold
Change

Fold
Change

p Value Fold
Change

p Value Fold
Change

p Value Fold
Change

Mm.2036 NM_008332.3 IFIT-2
interferon-induced protein with
tetratricopeptide repeats 2

0.0421a,b 8.6b 0.1411 17.8 0.0001a,b 11.7 48.6 0.1747 1.49 0.0156a 3.3 0.1138 1.8

Mm.19131 NM_009778 C3 complement component 3 0.2833 1.1 0.1758 2.1 0.0060a,b 3.1 20.7 0.3720 1.25 0.0629 3.4 0.0482a 2.3

Mm.24045 NM_021384.3 CIG-5
radical S-adenosyl methionine
domain containing 2

0.0473a,b 4.6b 0.0879 16.1 0.0001a,b 12.4 25.6 0.2050 1.41 0.0754 4.8 0.2567 3.3

Cytokines

Mm.222830 NM_008361 II lb interleukin-1 beta 0.2980 1.6 0.1648 1.9 0.0006a,b 4.8 12.6 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.1019 NM_031168.1 IL-6 interleukin-6 0.2141 1.5 0.1873 1.7 0.0088a,b 2.3 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.1245 NM_010510.1 Ifnbl interferon-beta 1 0.2563 1.3 0.1017 2.5 0.5754 1.1 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.240327 NM_008337 Ifng interferon-gamma 0.3682 1.1 0.4068 1.1 0.1111 �1.5 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.1293 NM_013693 Tnf
tumor necrosis factor
DIF/TNF-alpha

0.1380 1.6 0.0775 2.5 0.0022a,b 2.1b 101.3 0.4413 1.12 0.0874 2.9 0.0698 2.1

Chemokines

Mm.290320 NM_011333 Ccl2 chemokine (C-C motif) ligand 2 0.2305 2.4 0.2039 7.2 0.0023a,b 5.4b 9.7 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.1282 NM_011337 Ccl3 chemokine (C-C motif) ligand 3 0.8226 1.1 0.5772 2.0 0.1268 2.2 17.1 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.244263 NM_013652 Cd4 chemokine (C-C motif) ligand 4 0.0333a,b 2.8b 0.1477 6.4 0.0015a,b 4.7b 74.9 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.284248 NM_013653 Ccl5
chemokine (C-C motif) ligand 5
MuRantes/RANTES

0.9804 1.3 0.1071 2.4 0.8379 1.5 1.6 0.4413 1.12 0.0519 3.4 0.0650 2.2

Mm.877 NM_021274 Cxcl10
chemokine (C-X-C motif)
ligand 10

0.2693 3.0 0.0324a 7.1b 0.0157a 3.3b 3.6 0.4232 1.15 0.0874 2.9 0.0685 2.1

Markers of Cellular Immune Response

Mm.1858 NM_009857.1 Cd8a
CD8 antigen, alpha chain
(isoform 2)

0.3467 1.2 0.4333 �1.0 0.1374 �2.0 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.15819 NM_009853.1 Cd68 CD68 (macrosialin) 0.9278 �1.0 0.2318 1.4 0.7309 1.1 2.1 0.9799 1.03 0.1114 1.6 0.5726 1.1

Mm.210361 NM_007648.4 Cd3e
CD3 antigen, epsilon
polypeptide

0.3408 1.2 0.4428 �1.1 0.0306a �1.7 112.0 0.4413 1.12 0.0874 2.9 0.0698 2.1

Mm.2209 NM_013488 Cd4 CD4 antigen 0.0413a �1.5 0.2243 �1.5 0.1450 �1.3 7.6 0.8866 1.02 0.3322 1.3 0.4661 �1.5

Mm.10747 NM_019467.2 Aif1
allograft inflammatory factor 1
(ibal)

0.7214 1.0 0.7278 �1.1 0.9628 1.3 4.7 0.0147a 1.76 0.0625 2.4 0.0365a 1.6

Mm.262106 NM_008401 Itgam integrin alpha M (CD11b) 0.1692 �1.5 0.1552 �1.5 0.2742 �1.3 4.1 0.0236a 1.65 0.0242a,b 2.2b 0.1886 1.6

Mm.2254 NM_010130.4 Emr1

EGF-like module-containing,
mucin-like, hormone
receptor-like sequence 1
precursor (F4/80)

0.0960 �2.2 0.1020 �1.9 0.0788 �2.2 5.5 0.1388 1.49 0.0045a,b 4.0b 0.0164a,b 2.0

Mm.1239 NM_010277 Gfap glial fibrillary acidic protein 0.1444 �1.2 0.6905 �1.2 0.8128 1.0 2.0 0.8252 �1.07 0.0829 2.6 0.7093 �1.1

(Continued on next page)
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Molecu
mPGK-nls-LacZ-WPRE-SIN-30 LTR fragment from SIN-mPGK-
nls-LacZ-WPRE-SIN-30 LTR117 to generate pCCL-mPGK-nls-
LacZ-WPRE-SIN. The XbaI site after the 30 LTR was removed
to generate pCCL-mPGK-nls-LacZ-WPRE-SINDXbaI. Finally,
pCCL-H1-shHTT6 and pCCL-H1-shLUC were generated from
pENTR/D-TOPO-H1-shHTT6 and pENTR/D-TOPO-H1-shLUC
by digesting them with NotI blunt and PvuII and cloning the H1-
shHTT6 and H1-shLUC fragments into ClaI-EcoRI blunt digested
pCCL-mPGK-nls-LacZ-WPRE-SINDXbaI. LVs encoding the first
171 amino acids of human HTT with 82 CAG repeats (SIN-
PGK-HTT171-82Q-WPRE) and the shRNA that targets human
HTT (SIN-cPPT-PGK-GFP-WPRE-LTR-TRE-H1-shHTT6, here-
after called SIN-shHTT6) have been previously described.17,118

The psiCHECK-2 plasmid, expressing renilla and firefly luciferase
(Promega), was used for rapid, quantitative evaluation of guide and
passenger strand incorporation into the RISC.75,76 The target se-
quences of shHTT6 (guide and passenger stands) were cloned into
the multiple cloning region located downstream of the Renilla lucif-
erase translational stop codon. The psiCHECK-2 plasmid was
digested with XhoI and NotI and gel purified. Insert DNA contain-
ing the shHHT6 passenger (50-TCGAGAAAGCTTTGATGGATT
CTAATCTGGATCCGC-30 and 50-GGCCGCGGATCCAGATTAG
AATCCATCAAAGCTTTC-30) and guide strands (50-TCGAGAG
ATTAGAATCCATCAAAGCTTTGGATCCGC-30 and 50-GGCCGC
GGATCCAAAGCTTTGATGGATTCTAATCTC-30) were hybrid-
ized (95�C, cooled to room temperature [RT]) and ligated with T4
ligase (New England Biolabs) into the digested psiCHECK-2 vector.
The resulting plasmids, psiCheck-2-shHTT6/G and psiCheck-2-
shHTT6/P, were verified by sequencing (sequencing primer: 50-TCAA
GAGCTTCGTGGAG-30).

LV Production and Purification

LVs were produced in HEK293T cells, using the four-plasmid system,
as previously described.119 HIV-1 vectors were pseudotyped with the
vesicular stomatitis virus glycoprotein (VSV-G) envelope, concen-
trated by ultracentrifugation, and resuspended in PBS (GIBCO, Life
Technologies) supplemented with 1% BSA (Sigma-Aldrich).

The Vivapure LentiSELECT 500 kit was used for small-scale purifica-
tion of the lentiviral particles (VWR). The Sartobind ion exchange
membrane adsorber technology used in LentiSELECT efficiently
and rapidly captures and recovers large viral particles (3,000 nm
pores). In brief, 500 mL of supernatant was harvested and filtrated
on the provided filter. The supernatant was pumped through the filter
at a rate of 10–20 mL/min. After the assembly of the LentiSELECT
column and connection to the peristaltic pump, 150 mL of loading
buffer was pumped through the column at a rate of 10 mL/min.
The flow through was treated as biohazard waste. Once bound, viral
particles were purified by washing away nonspecifically bound pro-
tein with 120 mL of washing buffer at a rate of 15 mL/min. The viral
particles were then eluted using 30mL of buffered solution containing
a high concentration of sodium chloride. The elution was performed
using a 20 mL syringe at a rate of 1 mL/min. Finally, the eluate was
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collected in PBS and centrifuged at 37,000 � g at 4�C for 90 min to
concentrate it. The viral pellet was resuspended in PBS, aliquoted,
and frozen at �80�C.

The viral particle content of each batch was determined by p24
antigen ELISA (RETROtek). Viral stocks were stored at �80�C
until use.

HEK293T Cell Culture, Infection, RNA Extraction, and qRT-PCR

HEK293T cells (CRL11268; ATCC/LGC standards) were cultured in
DMEM supplemented with 10% fetal bovine serum (FBS), 100 U/mL
penicillin, and 100 mg/mL streptomycin at 37�C in a 5% CO2/air at-
mosphere. One day prior to infection, HEK293T cells were plated at a
density of 500,000 cells per well in 6-well plates (Becton Dickinson) or
100,000 cells per well in 12-well plates (Becton Dickinson). One day
later, the cells in the 6-well plates were co-infected with lentiviral par-
ticles (150 ng of p24 antigen for each LV) expressing Htt171-82Q, and
the shRNAs and the cells in the 12-well plates with 60 ng of p24 with
the pCCL-shHTT6 per well. They were passaged once 48 hr later, and
TRIzol RNA Isolation Reagent (Thermo Fisher) was used to isolate
the mRNA for qRT-PCR analysis 5 days after infection. For the anal-
ysis of shRNA synthesis and processing, cells from each 12-well plate
were passaged and transferred into two 6-well plates, 2 days after
infection, and the mirVana miRNA Isolation kit (Life Technologies)
was used to extract total RNA 3 days later. For the experiment to mea-
sure VCN, HEK293T cells were infected with lentiviral particles
(150 ng of p24 antigen) expressing the shRNAs (SIN-shHTT6 or
shLUC and pCCL-shHTT6 or shLUC), and the corresponding
DNA and RNA (six wells; Corning Life Sciences) were extracted
with the TRIzol RNA Isolation Reagent (Thermo Fisher), 7 days after
infection. All samples were stored at �80�C.

Luciferase Assays

Five thousand HEK293T cells were co-transfected with 0.7 mL of
TransFast transfection buffer (E2431; Promega), 60 ng of shHHT6
plasmids, and 20 ng of psiCHECK-2 or psiCHECK-2 containing
the HTT6 guide/passenger sequence. Transfected cells were assayed
48 hr later, according to the manufacturer’s protocol for the Lucif-
erase Reporter Assay System (Promega) using a Glomax 96multiplate
luminometer (Promega). Relative luciferase activity was calculated as
the ratio between renilla and firefly luciferase activities � 100.

Measurement of HTT Silencing and Vector Copy Number by

Cross-Species Duplex qPCR

Weused the recently developed andvalidated primers for assessment of
LV copy in various species including humans and rodents. The primers
for the determination of VCN were LV-HIV-F: 50-TCTCGACGCAG
GACTCG-30 and LV-HIV-R: 50-TACTGACGCTCTCGCACC-30,
targeting the LV,120 and the highly conservedPoly (rC)-bindingprotein
2 (PCBP2) gene PCBP2-F: 50-TTGTGTCTCCAGTCTGCTTG-30,
PCBP2-R: 50-AGGTGGTGGTGGTGGTA-30.121

Following the workflow described by Christodoulou et al.,58 100 ng of
genomic DNA (gDNA) from HEK293T cells was used for the qPCR.
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For the standard curve, we used plasmid amounts (16 pg to 2 ng) of
pCCL-shLUC equivalent to a VCN of 0.16 to 20 in 100 ng of gDNA,
adjusting plasmid amounts for the size of the human genome (3.1 Gb
per haploid genome). The qPCR was performed in duplicate in 20 mL
using the KAPA SYBR FAST qPCR kit (Axon Laboratories) and
300 nM of each primer with a standard PCR program of 5 min at
95�C followed by 40 cycles of 3 s at 95�C, 20 s at 60�C (Rotor-
Gene Q; QIAGEN). The qPCR duplex assay displayed average ampli-
fication efficiencies of 92.4% ± 3.1% for qLV and 89.4% ± 1.2% for
qPCBP2, and a good correspondence between the expected and
observed LV values was observed in all cases. We used the spread-
sheets from Christodoulou and et al.58 to calculate the LV plasmid
and gDNA standard curves. The VCN standard curves and quantifi-
cation of LV insertion sites in samples were calculated using the
DDCT method values with PCBP2 as the internal calibrator gene.
The analysis was performed on three independent experiments with
biological duplicates or triplicates (total of n = 6). Technical dupli-
cates were used for the qPCR and qRT-PCR analysis. Chi-square
analysis was used to evaluate the reproducibility of the results.

qRT-PCR

RT-qPCR was performed in quadruplicate with cDNAs generated
from 1 mg of total RNA using the RT2 PCR Array First Strand Kit
(QIAGEN, SABiosciences). qPCR was carried out in a 20 mL reaction
volume containing RT2 SYBR Green qPCR Master Mix (QIAGEN,
SABiosciences) and 300 nM of both forward and reverse primers
recognizing a sequence of human HTT (50-CTGCACCGACCAA
AGAAAGAAC-30 and 50-CATAGCGATGCCCAGAAGTTTC-30)
using a Realplex thermal cycler (Eppendorf). Values for HTT
mRNA were normalized to a reference, b-actin (ACTB 50-TGAAG
GTGACAGCAGTCGGTTG-30 and 50-GGCTTTTAGGATGGCAA
GGGAC-30), according to following formula:

RE Htt =
2�Ct Htt

2�Ct actin
;

where RE = relative expression and Ct = cycle threshold. Data are ex-
pressed as mean values ± SEM.
Culture, Neural Induction, and Striatal Differentiation of Human

iPSCs

The human HD-iPSC line (60 CAG HD line) from the Coriell Insti-
tute for Medical Research was cultured on L7 (Lonza) matrix in
STEMPRO medium (Invitrogen) supplemented with 10 ng/mL re-
combinant human fibroblast growth factor 2 (FGF2). Cells were fed
daily and manually passaged every 5–7 days. Striatal neuron precur-
sors were derived as previously described in Nicoleau et al.60 and
Arber et al.61 Neuralized and patterned human iPSCs, enriched for
ventral telencephalic progenitors, were collected after 21 DIV using
Accutase for 10–20 min at 37�C and frozen in CryoStor CS10 (Invi-
trogen) freezing media. For terminal neuronal differentiation of stria-
tal precursors, cells were plated on polyornithine laminin-coated
dishes at 40,000 cells/cm2 in DMEM/F12 media supplemented with
N2, B27, 20 ng/mL brain-derived neurotrophic factor (BDNF; R&D
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Systems), 0.5 mM N6,20-O-dibutyryladenosine 30,50-cyclic mono-
phosphate sodium salt (dbcAMP; Sigma-Aldrich), 0.5 mM valpro-
mide (Lancaster Synthesis), and 25 ng/mL Activin A for 30–35
additional days.

Lentiviral Transduction of Neuronal Cultures, RNA Extraction,

and qRT-PCR

Neuronal cultures were transduced 15 days after plating by adding
15 ng of p24 viral particles per 100,000 neurons in the culture media.
Fifteen days after transduction, infected neuronal cultures were
processed for total RNA extraction using the RNeasy Plus Mini Kit
(QIAGEN). The purified RNA was quantified with a NanoDrop
ND-1000A spectrophotometer. Transcription was performed on
500 ng of RNA using the Cloned AMV First-Strand cDNA Synthesis
Kit (Invitrogen). cDNA synthesis was performed using total RNA
primed with 50 mMoligo(dT)mixed with 50 ng/mL random hexamers
according to the manufacturer’s protocol. qRT-PCR was performed
using Power SYBR Green PCR Mix and an LC480 system (Roche).
Quantification was performed at a threshold detection limit
(Ct value). The Ct of each target gene was normalized to the 18S
housekeeping gene (18S-FW: 50-GAGGATGAGGTGGAACGT
GT-30; 18S-RV: 50-TCTTCAGTCGCTCCAGGTCT-30; HTT-FW:
50-GCTGCTGGTTGGACAGAAACTC-30; HTT-RV: 50-AGTGA
TTGTTGCTATGGAGCGG-30). HTT mRNA allelic ratio anal-
ysis was performed using TaqMan SNP Genotyping Assays
(Hs00918153_m1; Applied Biosystems) on the same cDNA used
for qRT-PCR, as previously described.73 The median of the difference
of the Ct of each target allele (three technical replicates) was used to
calculate the HTT allelic ratio expressed as the percentage of rs362331
SNP “C” and “T” in all HTT mRNA (genomic DNA was used as a
control sample with a 50/50 HTT allelic ratio).74

RNA-Seq Analyses

For each of the six samples, mRNA was purified from 1 mg of total
RNA using the Dynabeads mRNA DIRECT Micro kit. The RNA
was fragmented, reverse transcribed, and barcoded using the Ion Total
RNA-Seq kit v2 and the Ion Xpress RNA-Seq barcode kit, following
the protocol of the manufacturer (Thermo Fisher). The amplicons
were quantified using the Agilent High Sensitivity DNA kit before
the samples were pooled into sets of three. Emulsion PCR and Enrich-
ment was performed on the IonOne Touch Instrument (Ion ES) using
the Ion PI Template OT2 200 kit v3 (Thermo Fisher). Samples were
manually loaded on an IonPI v3 chip and sequenced on the IonProton
System using Ion PI Sequencing 200 Kit v3 chemistry (200 bp read
length; Life Technologies). The Ion Proton reads (FASTQ files) were
imported into the RNA-seq pipeline of Partek Flow software (v 4.0;
Partek) using hg19 as a reference genome. To determine differentially
expressed genes between groups, we quantified mapped reads using
the Partek E/M algorithm, and differentially expressed genes were
identified using the Partek Gene Specific Analysis (GSA) algorithm.
Biological interpretations of the list of differentially expressed genes
were generated using Partek Genomics Suite (v6.6) and Gene Set
Enrichment Analysis (GSEA) software from the Broad Institute
(http://www.broadinstitute.org/gsea) or online (EnrichR).
Molecu
Illumina Sequencing of Small RNAs

The mirVana miRNA Isolation kit (Life Technologies) was used to
extract total RNA from infected HEK293T cells. Shortly after washing
with PBS, cells were disrupted with a Lysis/binding buffer before
proceeding to organic extraction using acid-phenol-chloroform.
The aqueous phase was recovered and the RNA isolated using
100% ethanol, the lysate-ethanol mix loaded onto a filter cartridge,
the tubes centrifuged, and the filters washed three times before final
elution with nuclease-free water (Thermo Fisher). RNAs were stored
at �80�C. Total RNA (4 mg) was then size separated on a 15% TBE
(Tris-base, boric acid, EDTA)-urea gel (Thermo Fisher Scientific).
The small RNA fraction was recovered from the gel and used in sub-
sequent library preparation steps. Libraries of small RNAs for
sequencing were prepared using NEXTflex Small RNA Sequencing
Kit v2 reagents (BIOO Scientific) according to the protocol supplied
by the manufacturer and 4 mg of total RNA. Cluster generation was
performed with the resulting libraries using Illumina TruSeq SR
Cluster Kit v4 reagents (catalog no. GD-401-4001; Illumina) and
sequenced on the Illumina HiSeq 2500 using TruSeq SBS Kit V4 re-
agents (catalog no. FC-401-4002). Sequencing data were processed
using Illumina Pipeline Software, version 1.84. NGS small RNA
raw datasets were analyzed using CLC Genomics Workbench 8
(QIAGEN). The reads were first adaptor-trimmed using the CLC
setting: minus strand, 50-CCTTGGCACCCGAGAATTCCA-30. The
first and last four bases (4N) were then clipped from the adaptor-
trimmed reads. All reads containing ambiguity N symbols and reads
shorter than 15 nt, longer than 55 nt, or represented less than 10 times
were discarded. The obtained unique small RNA reads were aligned
to the reference sequence of the siHtt6-19nt construct with a
maximum of 3 nt mismatches allowed. The percentages of reads
matching the siHtt6-19nt reference sequence based on the total num-
ber of small RNA reads were calculated.

In Vivo Experiments

Adult 20 g male C57/BL6 mice were used (Iffa Credo, Charles River)
for all in vivo experiments. The animals were housed in a tempera-
ture-controlled room and maintained on a 12 hr day/night cycle.
Food and water were available ad libitum. The animal facility was
approved by veterinarian inspectors (authorization no. VD-H18)
and complies with Swiss regulations concerning the care and use of
laboratory animals (authorization no. 2782, 2888, and 3073). The ex-
periments were performed in accordance with the European Commu-
nity directive (86/609/EEC) for the care and use of laboratory
animals.

Stereotaxic Injections of LVs

Concentrated viral stocks were thawed on ice and resuspended by
repeated pipetting. The mice were anesthetized using 75 mg/kg keta-
mine and 10 mg/kg xylazine, administered intraperitoneally. LVs
were stereotaxically injected into the striatum using a 34-gauge
blunt-tip needle linked to a Hamilton syringe (Hamilton) by a poly-
ethylene catheter at the following stereotaxic coordinates: 0.5 mm
rostral to bregma, 2 mm lateral to midline, and 3.5 mm from the skull
surface. Each mouse received vectors encoding HTT and a control
lar Therapy: Methods & Clinical Development Vol. 5 June 2017 271
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siRNA LV targeting luciferase mRNA in the left striatum and vectors
encoding both HTT and siRNA targeting HTT in the right striatum.

Each viral vector (200 ng of p24 antigen) was injected at a rate of
0.2 mL/min using an automatic injector (Stoelting) and the needle
was left in place for an additional 5 min. The skin was closed using
4-0 Prolene sutures (Ethicon, Johnson and Johnson) for mice.

Histological Processing

Eight weeks after lentiviral injection, animals received an overdose of
sodium pentobarbital and were transcardially perfused with PBS fol-
lowed by 4% paraformaldehyde (Fluka; Sigma) and 10% picric acid
fixation. Brains were removed and post-fixed in 4% paraformalde-
hyde and 10% picric acid for 24 hr and then cryoprotected in 30% su-
crose, 0.1 M PBS for 48 hr. A sledge microtome with a freezing stage
at �25�C (SM2400; Leica Microsystems AG) was used to cut coronal
brain sections of 25 mm thickness. Sections throughout the entire
striatum were collected and stored free-floating in PBS supplemented
with 0.12 mM sodium azide in 96-well plates at 4�C.

Striatal sections from injected mice were processed for immunohisto-
chemistry for dopamine and cAMP-regulated phosphoprotein with a
molecular mass of 32 kDa (DARPP-32, rabbit antibody SC11365;
Santa Cruz Biotechnology) and Ubi (rabbit antibody Z0458; Dakocy-
tomation) following the same protocol. Sections were pre-incubated
for 1 hr in phenylhydrazine (107251; Merck KGaA) diluted 1/1,000
in 0.1 M PBS at 37�C. They were rinsed three times in 0.1 M PBS
and incubated for 1 hr in a blocking solution of 10% normal goat
serum-0.1% Triton X-100 in 0.1 M PBS. Sections were incubated
overnight at 4�C in a solution containing the first antibody diluted
1/1,000 (in the blocking solution for Ubi and in 0.1M PBS-5% normal
goat serum for DARPP-32). They were washed three times with PBS
before applying the secondary antibody diluted 1/200 in PBS-1%
normal goat serum (biotinylated goat anti-rabbit, BA1000; Vector
Laboratories) for 1 hr at room temperature. The complex was re-
vealed using the Vectastain ABC kit (PK-6100; Vector Laboratories),
with 3,30-diaminobenzidine tetrahydrochloride (DAB metal concen-
trate; Pierce) as substrate. The sections were mounted, dehydrated by
soaking twice in 100% ethanol/toluene, and coverslips applied in Eu-
kitt (O. Kindler).

Quantification of DARPP-32 Lesions

The loss of DARPP-32 expression was analyzed by collecting digitized
images of approximately 12 sections per animal (150 mmbetween sec-
tions) with a slide scanner and quantifying the areas of the lesions in
square millimeters (mm2) using image analysis software (MCID Core
7.0, InterFocus Imaging; GE Healthcare Niagara). Lesion areas in
each section were defined as regions poor in DARPP-32 staining rela-
tive to the surrounding tissue. The volume was then estimated using
the following formula: volume = d * (a1 + a2 + a3.), where d is the
distance between serial sections (25 mm), and a1, a2, a3, . are
DARPP-32-depleted areas for individual sections. The lesion size
for each animal is expressed as the total lesion volume in 8–12 sec-
tions. The lesion volume for each group is expressed as the mean ±
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SEM of individual values. Statistical analysis was performed using a
Wilcoxon test for paired samples (Statistica 5.1; Statsoft). The signif-
icance level was set at p < 0.05.

Quantification of Inclusion Formation

For estimation of the number of Ubi-positive HTT inclusions, 12 cor-
onal sections of the striatum (separated by 150 mm) were scanned
with a 10� objective using a Zeiss Axioplan2 imaging microscope
equipped with an automated motorized stage and acquisition system
(Mercator Pro V6.50; ExploraNova). The quantification of all
Ubi-positive objects with an apparent cross-sectional area between
1 and 50 mm2 was performed as previously reported.17 The number
of Ubi-positive aggregates for each group is expressed as the
mean ± SEM of individual values for each mouse. Statistical analysis
was performed using a Wilcoxon test for paired samples (Statistica
5.1; Statsoft). The significance level was set at p < 0.05.

PCR Array Analysis of Inflammatory Gene Expression in Tissue

Samples

We designed custom PCR arrays to characterize the changes of
expression of genes involved in the detection of double-stranded
RNA and their effectors, genes involved in inflammation pathways
(Table 2), and markers of the cell-mediated immune response either
24 hr or 6 weeks after bilateral injection of 100 or 200 ng of purified
LVs or 200 ng of non-purified LVs in the striatum. An additional
mouse injected bilaterally with a high dose of shHTT6 (1,000 ng)
served as a positive control of inflammation at 24 hr.

Mice were sacrificed by pentobarbital overdose 24 hr or 6 weeks after
bilateral infection of each siRNA construct or PBS in the striatum.
Brains were dissected, placed on ice, and sliced using a mouse brain
matrix into 1-mm-thick fresh sections. Striatum samples were
removed from both hemispheres of two sections surrounding the
injection site, quickly lysed and homogenized in TRIzol, and stored
at �80�C before RNA extraction.

Reverse transcription was performed on 1 mg of RNA using the
RT2 PCR Array First Strand cDNA Synthesis Kit (103C-03;
SABiosciences). The quality of all samples was first assessed using
quality-control arrays to verify RNA integrity and the presence
of inhibitors of reverse transcription and PCR amplification
and genomic and general DNA contamination (PAMM-999A;
SABiosciences). qRT-PCR was performed with the RT2 SYBR Green
qPCR Master Mix (PA-010; SABiosciences) on our custom RT2
Profiler PCR Array (SABiosciences) using a RealPlex system (Eppen-
dorf). The expression level of each gene was normalized to the average
expression of the housekeeping genes Hsp90ab1 and GAPDH.
The fold change was calculated such that the normalized gene expres-
sion [2^(�Delta Ct)] in the shHTT6 samples was divided by the
normalized gene expression [2^(�Delta Ct)] in the PBS control sam-
ples. The p values were calculated based on the Student’s t test of the
2^(�Delta Ct) values for each gene in the PBS control group versus
shHHT6 LV groups, and p < 0.05 was considered to be statistically
significant.
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