1,179 research outputs found

    Phased-array antenna phase control circuit using frequency multiplication

    Get PDF
    Circuit separates out, from multiplied signals, antenna element signals which have desirable phase angles and feeds them to appropriate antenna elements of phased array. System may be used in either transmitting or receiving mode

    Phase interpolation circuits using frequency multiplication for phased arrays

    Get PDF
    Antenna phasing circuit is described with the following advantages - 1/ increased number of phased elements, 2/ current repetition for each array element, 3/ circuit simplicity, and 4/ accurate phase interpolation. This circuit functions with Huggins Scan or with nearly any other phasing system

    Phase control circuits using frequency multiplications for phased array antennas

    Get PDF
    A phase control coupling circuit for use with a phased array antenna is described. The coupling circuit includes a combining circuit which is coupled to a transmission line, a frequency multiplier circuit which is coupled to the combining circuit, and a recombining circuit which is coupled between the frequency multiplier circuit and phased array antenna elements. In a doubler embodiment, the frequency multiplier circuit comprises frequency doublers and the combining and recombining circuits comprise four-port hybrid power dividers. In a generalized embodiment, the multiplier circuit comprises frequency multiplier elements which multiply to the Nth power, the combining circuit comprises four-part hybrid power dividers, and the recombinding circuit comprises summing circuits

    Improved circularly polarized antenna

    Get PDF
    Antenna includes two sets of linearly polarized elements. Each set contains slots in parallel array. Sets are mutually orthogonal and are driven in phase quadrature. By changing lengths of slots or their separations, antenna beamwidth can be changed over wide range. Similar results are achieved with dipole configuration

    Array phasing device Patent

    Get PDF
    Apparatus for generating microwave signals at progressively related phase angles for driving antenna arra

    Non-dispersive optics using storage of light

    Full text link
    We demonstrate the non-dispersive deflection of an optical beam in a Stern-Gerlach magnetic field. An optical pulse is initially stored as a spin-wave coherence in thermal rubidium vapour. An inhomogeneous magnetic field imprints a phase gradient onto the spin wave, which upon reacceleration of the optical pulse leads to an angular deflection of the retrieved beam. We show that the obtained beam deflection is non-dispersive, i.e. its magnitude is independent of the incident optical frequency. Compared to a Stern-Gerlach experiment carried out with propagating light under the conditions of electromagnetically induced transparency, the estimated suppression of the chromatic aberration reaches 10 orders of magnitude.Comment: 11 pages, 4 figures, accepted for publication in Physical Review

    Circularly Polarized Antenna with Wide Projection and Range: A Concept

    Get PDF
    The slotted antenna structure discussed in this tech brief radiates a circularly polarized beam pattern over a wide angle. The basic structure, composed of waveguide slots, can be flush mounted in an airplane or spacecraft, and could be used in the communication link between an airplane and an air traffic satellite

    Fast Fourier Optimization: Sparsity Matters

    Full text link
    Many interesting and fundamentally practical optimization problems, ranging from optics, to signal processing, to radar and acoustics, involve constraints on the Fourier transform of a function. It is well-known that the {\em fast Fourier transform} (fft) is a recursive algorithm that can dramatically improve the efficiency for computing the discrete Fourier transform. However, because it is recursive, it is difficult to embed into a linear optimization problem. In this paper, we explain the main idea behind the fast Fourier transform and show how to adapt it in such a manner as to make it encodable as constraints in an optimization problem. We demonstrate a real-world problem from the field of high-contrast imaging. On this problem, dramatic improvements are translated to an ability to solve problems with a much finer grid of discretized points. As we shall show, in general, the "fast Fourier" version of the optimization constraints produces a larger but sparser constraint matrix and therefore one can think of the fast Fourier transform as a method of sparsifying the constraints in an optimization problem, which is usually a good thing.Comment: 16 pages, 8 figure

    An ATP and Oxalate Generating Variant Tricarboxylic Acid Cycle Counters Aluminum Toxicity in Pseudomonas fluorescens

    Get PDF
    Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O2-limited conditions
    • …
    corecore