382 research outputs found
10,000 Standard Solar Models: a Monte Carlo Simulation
We have evolved 10,000 solar models using 21 input parameters that are
randomly drawn for each model from separate probability distributions for every
parameter. We use the results of these models to determine the theoretical
uncertainties in the predicted surface helium abundance, the profile of the
sound speed versus radius, the profile of the density versus radius, the depth
of the solar convective zone, the eight principal solar neutrino fluxes, and
the fractions of nuclear reactions that occur in the CNO cycle or in the three
branches of the p-p chains. We also determine the correlation coefficients of
the neutrino fluxes for use in analysis of solar neutrino oscillations. Our
calculations include the most accurate available input parameters, including
radiative opacity, equation of state, and nuclear cross sections. We
incorporate both the recently determined heavy element abundances recommended
by Asplund, Grevesse & Sauval (2005) and the older (higher) heavy element
abundances recommended by Grevesse & Sauval (1998). We present best-estimates
of many characteristics of the standard solar model for both sets of
recommended heavy element compositions.Comment: ** John N. Bahcall passed away on August 17, 2005. Manuscript has 60
pages including 10 figure
New Modeling of the Lensing Galaxy and Cluster of Q0957+561: Implications for the Global Value of the Hubble Constant
The gravitational lens 0957+561 is modeled utilizing recent observations of
the galaxy and the cluster as well as previous VLBI radio data which have been
re-analyzed recently. The galaxy is modeled by a power-law elliptical mass
density with a small core while the cluster is modeled by a non-singular
power-law sphere as indicated by recent observations. Using all of the current
available data, the best-fit model has a reduced chi-squared of approximately 6
where the chi-squared value is dominated by a small portion of the
observational constraints used; this value of the reduced chi-squared is
similar to that of the recent FGSE best-fit model by Barkana et al. However,
the derived value of the Hubble constant is significantly different from the
value derived from the FGSE model. We find that the value of the Hubble
constant is given by H_0 = 69 +18/-12 (1-K) and 74 +18/-17 (1-K) km/s/Mpc with
and without a constraint on the cluster's mass, respectively, where K is the
convergence of the cluster at the position of the galaxy and the range for each
value is defined by Delta chi-squared = reduced chi-squared. Presently, the
best achievable fit for this system is not as good as for PG 1115+080, which
also has recently been used to constrain the Hubble constant, and the
degeneracy is large. Possibilities for improving the fit and reducing the
degeneracy are discussed.Comment: 22 pages in aaspp style including 6 tables and 5 figures, ApJ in
press (Nov. 1st issue
Helioseismological Implications of Recent Solar Abundance Determinations
We show that standard solar models are in good agreement with the
helioseismologically determined sound speed and density as a function of solar
radius, the depth of the convective zone, and the surface helium abundance, as
long as those models do not incorporate the most recent heavy element abundance
determinations. However, sophisticated new analyses of the solar atmosphere
infer lower abundances of the lighter metals (like C, N, O, Ne, and Ar) than
the previously widely used surface abundances. We show that solar models that
include the lower heavy element abundances disagree with the solar profiles of
sound speed and density as well as the depth of the convective zone and the
helium abundance. The disagreements for models with the new abundances range
from factors of several to many times the quoted uncertainties in the
helioseismological measurements. The disagreements are at temperatures below
what is required for solar interior fusion reactions and therefore do not
significantly affect solar neutrino emission. If errors in thecalculated OPAL
opacities are solely responsible for the disagreements, then the corrections in
the opacity must extend from 2 times 10^6 K (R = 0.7R_Sun)to 5 times 10^6 K (R
= 0.4 R_Sun), with opacity increases of order 10%.Comment: ApJ in press; clarified Figure
Estimating stellar mean density through seismic inversions
Determining the mass of stars is crucial both to improving stellar evolution
theory and to characterising exoplanetary systems. Asteroseismology offers a
promising way to estimate stellar mean density. When combined with accurate
radii determinations, such as is expected from GAIA, this yields accurate
stellar masses. The main difficulty is finding the best way to extract the mean
density from a set of observed frequencies.
We seek to establish a new method for estimating stellar mean density, which
combines the simplicity of a scaling law while providing the accuracy of an
inversion technique.
We provide a framework in which to construct and evaluate kernel-based linear
inversions which yield directly the mean density of a star. We then describe
three different inversion techniques (SOLA and two scaling laws) and apply them
to the sun, several test cases and three stars.
The SOLA approach and the scaling law based on the surface correcting
technique described by Kjeldsen et al. (2008) yield comparable results which
can reach an accuracy of 0.5 % and are better than scaling the large frequency
separation. The reason for this is that the averaging kernels from the two
first methods are comparable in quality and are better than what is obtained
with the large frequency separation. It is also shown that scaling the large
frequency separation is more sensitive to near-surface effects, but is much
less affected by an incorrect mode identification. As a result, one can
identify pulsation modes by looking for an l and n assignment which provides
the best agreement between the results from the large frequency separation and
those from one of the two other methods. Non-linear effects are also discussed
as is the effects of mixed modes. In particular, it is shown that mixed modes
bring little improvement as a result of their poorly adapted kernels.Comment: Accepted for publication in A&A, 20 pages, 19 figure
An optical time-delay estimate for the double gravitational lens system B1600+434
We present optical I-band light curves of the gravitationally lensed double
QSO B1600+434 from observations obtained at the Nordic Optical Telescope (NOT)
between April 1998 and November 1999. The photometry has been performed by
simultaneous deconvolution of all the data frames, involving a numerical lens
galaxy model. Four methods have been applied to determine the time delay
between the two QSO components, giving a mean estimate of \Delta_t = 51+/-4
days (95% confidence level). This is the fourth optical time delay ever
measured. Adopting a Omega=0.3, Lambda=0 Universe and using the mass model of
Maller et al. (2000), this time-delay estimate yields a Hubble parameter of
H_0=52 (+14, -8) km s^-1 Mpc^-1 (95% confidence level) where the errors include
time-delay as well as model uncertainties. There are time-dependent offsets
between the two (appropriately shifted) light curves that indicate the presence
of external variations due to microlensing.Comment: 15 pages, 4 figures, accepted for publication in Ap
How much do helioseismological inferences depend upon the assumed reference model?
We investigate systematic uncertainties in determining the profiles of the
solar sound speed, density, and adiabatic index by helioseismological
techniques. We find that rms uncertainties-averaged over the sun of ~ 0.2%-0.4%
are contributed to the sound speed profile by each of three sources: 1)the
choice of assumed reference model, 2) the width of the inversion kernel, and 3)
the measurements errors. The density profile is about an order of magnitude
less well determined by the helioseismological measurements. The profile of the
adiabatic index is determined to an accuracy of about 0.2% . We find that even
relatively crude reference models yield reasonably accurate solar parameters.Comment: Accepted for publication in ApJ . Related material at
http://www.sns.ias.edu/~jn
Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots
We examine the multiple exciton population dynamics in PbS quantum dots by
ultrafast spectrally-resolved supercontinuum transient absorption (SC-TA). We
simultaneously probe the first three excitonic transitions over a broad
spectral range. Transient spectra show the presence of first order bleach of
absorption for the 1S_h-1S_e transition and second order bleach along with
photoinduced absorption band for 1P_h-1P_e transition. We also report evidence
of the one-photon forbidden 1S_{h,e}-1P_{h,e} transition. We examine signatures
of carrier multiplication (multiexcitons for the single absorbed photon) from
analysis of the first and second order bleaches, in the limit of low absorbed
photon numbers (~ 10^-2), at pump energies from two to four times the
semiconductor band gap. The multiexciton generation efficiency is discussed
both in terms of a broadband global fit and the ratio between early- to
long-time transient absorption signals.. Analysis of population dynamics shows
that the bleach peak due to the biexciton population is red-shifted respect the
single exciton one, indicating a positive binding energy.Comment: 16 pages, 5 figure
Solar-like oscillations in the G8 V star tau Ceti
We used HARPS to measure oscillations in the low-mass star tau Cet. Although
the data were compromised by instrumental noise, we have been able to extract
the main features of the oscillations. We found tau Cet to oscillate with an
amplitude that is about half that of the Sun, and with a mode lifetime that is
slightly shorter than solar. The large frequency separation is 169 muHz, and we
have identified modes with degrees 0, 1, 2, and 3. We used the frequencies to
estimate the mean density of the star to an accuracy of 0.45% which, combined
with the interferometric radius, gives a mass of 0.783 +/- 0.012 M_sun (1.6%).Comment: accepted for publication in A&
Probing Interband Coulomb Interactions in Semiconductor Nanocrystals with 2D Double-Quantum Coherence Spectroscopy
Using previously developed exciton scattering model accounting for the
interband, i.e., exciton-biexciton, Coulomb interactions in semiconductor
nanocrystals (NCs), we derive a closed set of equations for 2D double-quantum
coherence signal. The signal depends on the Liouville space pathways which
include both the interband scattering processes and the inter- and intraband
optical transitions. These processes correspond to the formation of different
cross-peaks in the 2D spectra. We further report on our numerical calculations
of the 2D signal using reduced level scheme parameterized for PbSe NCs. Two
different NC excitation regimes considered and unique spectroscopic features
associated with the interband Coulomb interactions are identified.Comment: 11 pages, 5 figure
- âŠ