6,615 research outputs found

    Monitoring crack extension in fracture toughness tests by ultrasonics

    Get PDF
    An ultrasonic method was used to observe the onset of crack extension and to monitor continued crack growth in fracture toughness specimens during three point bend tests. A 20 MHz transducer was used with commercially available equipment to detect average crack extension less than 0.09 mm. The material tested was a 300-grade maraging steel in the annealed condition. A crack extension resistance curve was developed to demonstrate the usefulness of the ultrasonic method for minimizing the number of tests required to generate such curves

    Evaluation of solar cell welds by scanning acoustic microscopy

    Get PDF
    Scanning laser acoustic microscopy was used to nondestructively evaluate solar cell interconnect bonds made by resistance welding. Both copper-silver and silver-silver welds were analyzed. The bonds were produced either by a conventional parallel-gap welding technique using rectangular electrodes or new annular gap design with a circular electrode cross section. With the scanning laser acoustic microscope, it was possible to produce a real time television image which reveales the weld configuration as it relates to electrode geometry. The effect of electrode misalinement with the surface of the cell was also determined. A preliminary metallographic analysis was performed on selected welds to establish the relationship between actual size and shape of the weld area and the information available from acoustic micrographs

    Evaluation of electrode shape and nondestructive evaluation method for welded solar cell interconnects

    Get PDF
    Resistance welds of solar cell interconnect tabs were evaluated. Both copper-silver and silver-silver welds were made with various heat inputs and weld durations. Parallel gap and annular gap weld electrode designs were used. The welds were analyzed by light microscope, electron microprobe and scanning laser acoustic microscope. These analyses showed the size and shape of the weld, the relationship between the acoustic micrographs, the visible electrode footprint, and the effect of electrode misalignment. The effect of weld heat input on weld microstructure was also shown

    Sonoelastography of the Common Flexor Tendon of the Elbow with Histologic Agreement: A Cadaveric Study.

    Get PDF
    Purpose To determine the correlation of the results of conventional B-mode ultrasonography (US) and compression sonoelastography with histologic results in common flexor tendons of the elbow in human cadavers. Materials and Methods Twenty-five common flexor tendons were evaluated in 16 fresh, unembalmed cadavers of 11 women with a median age of 85 years (range, 71-101 years) and five men with a median age of 78 years (range, 70-88 years). Informed consent was provided according to the last will of the donors. B-mode US results were classified as grade 1, normal tendon with homogeneous fibrillar pattern; grade 2, tendon thickening or hypoechoic areas and/or calcifications in less than 30% of the tendon; or grade 3, hypoechoic areas and/or calcifications greater than 30% of the tendon. Sonoelastographic results were grade 1, blue (hardest) to green (hard); grade 2, yellow (soft); and grade 3, red (softest). The intraclass correlation coefficient was calculated to determine agreement with histologic findings for each B-mode US, sonoelastographic, and combined B-mode US and sonoelastographic examination. Histologic results were grade 1, normal, with parallel fibrillar pattern; grade 2, mild tendinopathy, with cellular infiltration, angiogenesis, or fatty vacuoles; or grade 3, severe tendinopathy, with loss of parallel collagen structure and necrosis. Results Histologic alterations were detected in 44% (11 of 25) of biopsy specimens. Intraclass correlation with histologic results was 0.57 for B-mode US, 0.68 for sonoelastography, and 0.84 for the combination of the two approaches. Conclusion The addition of sonoelastography to B-mode US provided statistically significant improvement in correlation with histologic results compared with the use of B-mode US alone (P \u3c .02). (©) RSNA, 2016 Online supplemental material is available for this article

    Morphology and Distribution of Volcanic Vents in the Orientale Basin from Chandrayaan-1 Moon Mineralogy Mapper (M3) Data

    Get PDF
    One of the most fundamental questions in the geological and thermal evolution of the Moon is the nature and history of mantle melting and its relationship to the formation and evolution of lunar multi-ringed basins. Mare volcanic deposits provide evidence for the nature, magnitude and composition of mantle melting as a function of space and time [1]. Many argue that mantle partial melts are derived from depths well below the influence of multiringed basin impact events [1], while others postulate that the formation of these basins can cause mantle perturbations that are more directly linked to the generation ascent and eruption of mare basalts [2,3]. In any case, longer-term basin evolution will considerably influence the state and orientation of stress in the lithosphere, and the location of mare volcanic vents in basins as a function of time [4]. Thus, the location, nature and ages of volcanic vents and deposits in relation to multi-ringed impact basins provides evidence for the role that these basins played in the generation of volcanism or in the influence of the basins on surface volcanic eruption and deposit concentration. Unfortunately, most lunar multi-ringed impact basins have been eroded by impacts or filled with lunar mare deposits [5-8], with estimates of the thickness of mare fill extending up to more than six km in the central part of some basins [9-11]. The interior of most basins (e.g., Crisium, Serenitatis, Imbrium, Humorum) are almost completely covered and obscured. Although much is known about the lava filling of multi-ringed basins, and particularly the most recent deposits [5-8], little is known about initial stages of mare volcanism and its relationship to the impact event. One multi-ringed basin, Orientale, offers substantial clues to the relationships of basin interiors and mare basalt volcanism

    Effects of Space Weathering on Reflectance Spectra of Ureilites: First Studies

    Get PDF
    Ureilites are differentiated meteorites (ultramafic rocks interpreted to be mantle residues) that contain as much carbon as the most carbon-rich carbonaceous chondrites (CCs). Reflectance spectra of ureilites are similar to those of some CCs. Hence, ureilitic asteroids may accidentally be categorized as primitive because their spectra could resemble those of C-complex asteroids, which are thought to be CC-like. We began spectral studies of progressively laser-weathered ureilites with the goals of predicting UV-VIS-IR spectra of ureilitic asteroids, and identifying features that could distinguish differentiated from primitive dark asteroids. Space weathering has not previously been studied for ureilites, and, based on space weathering studies of CCs and other C-rich materials, it could significantly alter their reflectance spectra

    A Mercury Lander Mission Concept Study for the Next Decadal Survey

    Get PDF
    Mariner 10 provided our first closeup reconnaissance of Mercury during its three flybys in 1974 and 1975. MESSENGERs 20112015 orbital investigation enabled numerous discoveries, several of which led to substantial or complete changes in our fundamental understanding of the planet. Among these were the unanticipated, widespread presence of volatile elements (e.g., Na, K, S); a surface with extremely low Fe abundance whose darkening agent is likely C; a previously unknown landformhollows that may form by volatile sublimation from within rocks exposed to the harsh conditions on the surface; a history of expansive effusive and explosive volcanism; substantial radial contraction of the planet from interior cooling; offset of the dipole moment of the internal magnetic field northward from the geographic equator by ~20% of the planets radius; crustal magnetization, attributed at least in part to an ancient field; unexpected seasonal variability and relationships among exospheric species and processes; and the presence in permanently shadowed polar terrain of water ice and other volatile materials, likely to include complex organic compounds. Mercurys highly chemically reduced and unexpectedly volatile-rich composition is unique among the terrestrial planets and was not predicted by earlier hypotheses for the planets origin. As an end-member of terrestrial planet formation, Mercury holds unique clues about the original distribution of elements in the earliest stages of the Solar System and how planets (and exoplanets) form and evolve in close proximity to their host stars. The BepiColombo mission promises to expand our knowledge of this planet and to shed light on some of the mysteries revealed by the MESSENGER mission. However, several fundamental science questions raised by MESSENGERs pioneering exploration of Mercury can only be answered with in situ measurements from the planets surface

    PAPER-64 Constraints On Reionization II: The Temperature Of The z=8.4 Intergalactic Medium

    Get PDF
    We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z=8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. (2015). Twenty-one cm power spectra with amplitudes of hundreds of mK^2 can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the Cosmic Microwave Background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z=8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ~5 K for neutral fractions between 10% and 85%, above ~7 K for neutral fractions between 15% and 80%, or above ~10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.Comment: companion paper to Ali et al. (2015), ApJ 809, 61; matches version accepted to ApJ; 11 pages, 7 figure
    • …
    corecore