10 research outputs found

    High resolution images for Simlops, a new genus of goblin spiders (Araneae, Oonopidae) from northern South America. (Bulletin of the American Museum of Natural History, no. 388)

    Get PDF
    High resolution images for Simlops, a new genus of goblin spiders (Araneae, Oonopidae) from northern South America. (Bulletin of the American Museum of Natural History, no. 388). Bulletin no. 388 can be accessed at this link: http://hdl.handle.net/2246/652

    The sPHENIX Micromegas Outer Tracker

    No full text
    International audienceThe sPHENIX Time Projection Chamber Outer Tracker (TPOT) is a Micromegas based detector. It is a part of the sPHENIX experiment that aims to facilitate the calibration of the Time Projection Chamber, in particular the correction of the time-averaged and beam-induced distortions of the electron drift. This paper describes the detector mission, setup, construction, installation, commissioning and performance during the first year of sPHENIX data taking

    The large inner Micromegas modules for the Atlas Muon Spectrometer upgrade: Construction, quality control and characterization

    No full text
    International audienceThe steadily increasing luminosity of the LHC requires an upgrade with high-rate and high-resolution detector technology for the inner end cap of the ATLAS muon spectrometer: the New Small Wheels (NSW). In order to achieve the goal of precision tracking at a hit rate of about 15 kHz/cm2 at the inner radius of the NSW, large area Micromegas quadruplets with 100µm spatial resolution per plane have been produced. IRFU, from the CEA research center of Saclay, is responsible for the production and validation of LM1 Micromegas modules. The construction, production, qualification and validation of the largest Micromegas detectors ever built are reported here. Performance results under cosmic muon characterization will also be discussed

    E

    No full text

    The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3

    Get PDF
    Abstract The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of  ℒ = 2 × 1034 cm-2 s-1 was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of  ℒ = 2 × 1034 cm-2 s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.</jats:p
    corecore