71 research outputs found

    Static non-reciprocity in mechanical metamaterials

    Full text link
    Reciprocity is a fundamental principle governing various physical systems, which ensures that the transfer function between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity have been mostly considered in dynamic systems, for electromagnetic, acoustic and mechanical wave propagation associated with spatio-temporal variations. Here we show that it is possible to strongly break reciprocity in static systems, realizing mechanical metamaterials that, by combining large nonlinearities with suitable geometrical asymmetries, and possibly topological features, exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. In addition to extending non-reciprocity and isolation to statics, our work sheds new light on the understanding of energy propagation in non-linear materials with asymmetric crystalline structures and topological properties, opening avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.Comment: 19 pages, 3 figures, Supplementary information (11 pages and 5 figures

    A characteristic lengthscale causes anomalous size effects and boundary programmability in mechanical metamaterials

    Get PDF
    The architecture of mechanical metamaterialsis designed to harness geometry, non-linearity and topology to obtain advanced functionalities such as shape morphing, programmability and one-way propagation. While a purely geometric framework successfully captures the physics of small systems under idealized conditions, large systems or heterogeneous driving conditions remain essentially unexplored. Here we uncover strong anomalies in the mechanics of a broad class of metamaterials, such as auxetics, shape-changers or topological insulators: a non-monotonic variation of their stiffness with system size, and the ability of textured boundaries to completely alter their properties. These striking features stem from the competition between rotation-based deformations---relevant for small systems---and ordinary elasticity, and are controlled by a characteristic length scale which is entirely tunable by the architectural details. Our study provides new vistas for designing, controlling and programming the mechanics of metamaterials in the thermodynamic limit.Comment: Main text has 4 pages, 4 figures + Methods and Supplementary Informatio

    Cone-rod dystrophy can be a manifestation of Danon disease

    Get PDF
    Background Danon disease is a neuromuscular disorder with variable expression in the eye. We describe a family with Danon disease and cone-rod dystrophy (CRD). Methods Affected males of one family with Danon were invited for an extensive ophthalmologic examination, including color vision testing, fundus photography, Goldmann perimetry, full-field electroretinogram (ERG), and SD-OCT. Previous ophthalmologic data were retrieved from medical charts. The LAMP2 and RPGR gene were analyzed by direct sequencing. Results Two siblings had no ocular phenotype. The third sibling and a cousin developed CRD leading to legal blindness. Visual acuity deteriorated progressively over time, color vision was severely disturbed, and ERG showed reduced photopic and scotopic responses. SD-OCT revealed thinning of the photoreceptor and RPE layer. Visual fieldsdemonstrated central scotoma. The causal mutation was p. Gly384Arg in LAMP2; no mutations were found in RPGR. Conclusions This is the first description of CRD in Danon disease. The retinal phenotype was a late onset but severe dystrophy characterized by loss of photoreceptors and RPE cells. With this report, we highlight the importance of a comprehensive ophthalmologic examination in the clinical work-up of Danon disease

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer

    Effects of an exercise programme with people living with HIV: Research in a disadvantaged setting

    Get PDF
    This study aimed to analyse the physical health effects of a community based 10-week physical activity programme with people living with HIV. It was developed, implemented and evaluated in a disadvantaged community in South Africa. A pre-post research design was chosen. Major recruitment and adherence challenges resulted in a small sample. Among the 23 participants who took part in both baseline and final testing, compliant participants (n = 12) were compared to non-compliant participants (n = 11). Immunological (CD4, viral load), anthropometric (height, weight, skinfolds and waist to hip ratio), muscular strength (h1RM) and cardiopulmonary fitness (time on treadmill) parameters were measured. The compliant and non-compliant groups were not different at baseline. Muscular strength was the parameter most influenced by compliance with the physical activity programme (F = 4.516, p = 0.047). Weight loss and improvement in cardiopulmonary fitness were restricted by the duration of the programme, compliance and influencing factors (e.g. nutrition, medication). The increase in strength is significant and meaningful in the context, as the participants goals were to look healthy and strong to avoid HIV related stigma. The improvements in appearance were a motivational factor, especially since the changes were made visible in a short time. Practical implications for health promotion are described. More research contextualised in disadvantaged settings is needed.DHE

    Clinical course of cone dystrophy caused by mutations in the RPGR gene

    Get PDF
    Contains fulltext : 97720.pdf (publisher's version ) (Closed access)BACKGROUND: Mutations in the RPGR gene predominantly cause rod photoreceptor disorders with a large variability in clinical course. In this report, we describe two families with mutations in this gene and cone involvement. METHODS: We investigated an X-linked cone dystrophy family (1) with 25 affected males, 25 female carriers, and 21 non-carriers, as well as a small family (2) with one affected and one unaffected male. The RPGR gene was analyzed by direct sequencing. All medical records were evaluated, and all available data on visual acuity, color vision testing, ophthalmoscopy, fundus photography, fundus autofluorescence, Goldmann perimetry, SD-OCT, dark adaptation, and full-field electroretinography (ERG) were registered. Cumulative risks of visual loss were studied with Kaplan-Meier product-limit survival analysis. RESULTS: Both families had a frameshift mutation in ORF15 of the RPGR gene; family 1 had p.Ser1107ValfsX4, and family 2 had p.His1100GlnfsX10. Mean follow up was 13 years (SD 10). Virtually all affected males showed reduced photopic and normal scotopic responses on ERG. Fifty percent of the patients had a visual acuity of <0.5 at age 35 years (SE 2.2), and 75% of the patients was legally blind at age 60 years (SE 2.3). Female carriers showed no signs of ocular involvement. CONCLUSIONS: This report describes the clinical course and visual prognosis in two families with cone dystrophy due to RPGR mutations in the 3' terminal region of ORF15. Remarkable features were the consistent, late-onset phenotype, the severe visual outcome, and the non-expression in female carriers. Expression of RPGR mutations in this particular region appears to be relatively homogeneous and predisposed to cones

    Variation in Array Size, Monomer Composition and Expression of the Macrosatellite DXZ4

    Get PDF
    Macrosatellites are some of the most polymorphic regions of the human genome, yet many remain uncharacterized despite the association of some arrays with disease susceptibility. This study sought to explore the polymorphic nature of the X-linked macrosatellite DXZ4. Four aspects of DXZ4 were explored in detail, including tandem repeat copy number variation, array instability, monomer sequence polymorphism and array expression. DXZ4 arrays contained between 12 and 100 3.0 kb repeat units with an average array containing 57. Monomers were confirmed to be arranged in uninterrupted tandem arrays by restriction digest analysis and extended fiber FISH, and therefore DXZ4 encompasses 36–288 kb of Xq23. Transmission of DXZ4 through three generations in three families displayed a high degree of meiotic instability (8.3%), consistent with other macrosatellite arrays, further highlighting the unstable nature of these sequences in the human genome. Subcloning and sequencing of complete DXZ4 monomers identified numerous single nucleotide polymorphisms and alleles for the three microsatellite repeats located within each monomer. Pairwise comparisons of DXZ4 monomer sequences revealed that repeat units from an array are more similar to one another than those originating from different arrays. RNA fluorescence in situ hybridization revealed significant variation in DXZ4 expression both within and between cell lines. DXZ4 transcripts could be detected originiating from both the active and inactive X chromosome. Expression levels of DXZ4 varied significantly between males, but did not relate to the size of the array, nor did inheritance of the same array result in similar expression levels. Collectively, these studies provide considerable insight into the polymorphic nature of DXZ4, further highlighting the instability and variation potential of macrosatellites in the human genome

    X-linked cataract and Nance-Horan syndrome are allelic disorders

    Get PDF
    Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication–triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved

    The Natural History of Leber Congenital Amaurosis and Cone-Rod Dystrophy Associated with Variants in the GUCY2D Gene

    Get PDF
    OBJECTIVE: To describe the spectrum of Leber congenital amaurosis (LCA) and cone-rod dystrophy (CORD) associated with the GUCY2D gene, and to identify potential clinical endpoints and optimal patient selection for future therapeutic trials. DESIGN: International multicenter retrospective cohort study. SUBJECTS: 82 patients with GUCY2D-associated CORD and LCA from 54 molecularly confirmed families. METHODS: Data were gathered by reviewing medical records for medical history, symptoms, best-corrected visual acuity (BCVA), ophthalmoscopy, visual fields, full-field electroretinography and retinal imaging (fundus photography, spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence). MAIN OUTCOMES MEASURES: Age of onset, annual decline of visual acuity, estimated visual impairment per age, genotype-phenotype correlations, anatomic characteristics on funduscopy, and multimodal imaging. RESULTS: Fourteen patients with autosomal recessive LCA and 68 with autosomal dominant CORD were included. The median follow-up time was 5.2 years (interquartile range (IQR), 2.6-8.8) for LCA, and 7.2 years (IQR, 2.2-14.2) for CORD. Generally, LCA presented in the first year of life. The BCVA in LCA ranged from no light perception to 1.00 logMAR, and remained relatively stable during follow-up. Imaging for LCA was limited, but showed little to no structural degeneration. In CORD, progressive vision loss started around the second decade of life. The annual decline rate of visual acuity was 0.022 logMAR (P A and the c.2512C>T GUCY2D variant (P = 0.798). At the age of 40 years the probability of being blind or severely visually impaired was 32%. The integrity of the ellipsoid zone (EZ) and external limiting membrane (ELM) on SD-OCT were correlated significantly with BCVA (Spearman's ρ = 0.744, P = 0.001 and ρ = 0.712, P < 0.001, respectively) in CORD. CONCLUSION: LCA due to variants in GUCY2D results in severe congenital visual impairment with relatively intact macular anatomy on funduscopy and available imaging, suggesting a long preservation of photoreceptors. Despite large variability, GUCY2D-associated CORD generally presented during adolescence with a progressive loss of vision and culminated in severe visual impairment during mid to late-adulthood. The integrity of the ELM and EZ may be suitable structural endpoints for therapeutic studies in GUCY2D-associated CORD
    corecore