7,759 research outputs found

    Highly-tunable formation of nitrogen-vacancy centers via ion implantation

    Full text link
    We demonstrate highly-tunable formation of nitrogen-vacancy (NV) centers using 20 keV 15N+ ion implantation through arrays of high-resolution apertures fabricated with electron beam lithography. By varying the aperture diameters from 80 to 240 nm, as well as the average ion fluences from 5 x 10^10 to 2 x 10^11 ions/cm^2, we can control the number of ions per aperture. We analyze the photoluminescence on multiple sites with different implantation parameters and obtain ion-to-NV conversion yields of 6 to 7%, consistent across all ion fluences. The implanted NV centers have spin dephasing times T2* ~ 3 microseconds, comparable to naturally occurring NV centers in high purity diamond with natural abundance 13C. With this technique, we can deterministically control the population distribution of NV centers in each aperture, allowing for the study of single or coupled NV centers and their integration into photonic structures.Comment: Related papers at http://pettagroup.princeton.ed

    A study of poultry processing plant noise characteristics and potential noise control techniques

    Get PDF
    The noise environment in a typical poultry processing plant was characterized by developing noise contours for two representative plants: Central Soya of Athens, Inc., Athens, Georgia, and Tip Top Poultry, Inc., Marietta, Georgia. Contour information was restricted to the evisceration are of both plants because nearly 60 percent of all process employees are stationed in this area during a normal work shift. Both plant evisceration areas were composed of tile walls, sheet metal ceilings, and concrete floors. Processing was performed in an assembly-line fashion in which the birds travel through the area on overhead shackles while personnel remain at fixed stations. Processing machinery was present throughout the area. In general, the poultry processing noise problem is the result of loud sources and reflective surfaces. Within the evisceration area, it can be concluded that only a few major sources (lung guns, a chiller component, and hock cutters) are responsible for essentially all direct and reverberant sound pressure levels currently observed during normal operations. Consequently, any effort to reduce the noise problem must first address the sound power output of these sources and/or the absorptive qualitities of the room

    Growing Better Crops of Barley.

    Get PDF
    10 p

    Agronomic Performance of Sorghum Hybrids Produced by using Different Male-sterility-inducing Cytoplasms

    Get PDF
    Experiments were conducted in three environments in Iowa to obtain information on the effects of different cytoplasms on agronomic characters in grain sorghum (Sorghum bicolor L. Moench) hybrids. Compared with A1 cytoplasm, A2 and A3 cytoplasms delayed flowering; reduced the percentage of fertile pollen, the number of seeds per panicle, and grain yield; and increased 100-seed weight of the hybrids. Hybrids with A2 or A3 cytoplasm did not differ (p ≥0.05) from those in the A1 cytoplasm for plant height, panicles per plant, or for length, width, and area of the third and fourth leaves from the top of the plant. A2-cytoplasm hybrids did not differ (p ≥0.05) from those in A3 cytoplasm for any of the traits measure. The results are discussed relative to the performance of hybrids with pollen fertility restored and not restored

    Those New Barley and Flax Varieties

    Get PDF
    Growers in northwestern Iowa will be hearing more about several new and improved varieties of barley and flax. Particularly promising varieties for Iowa are Traill and Liberty barley as well as Arny and Bolley flax

    A quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability

    Full text link
    Microscopic cascading of second-order nonlinearities between two molecules has been proposed to yield an enhanced third-order molecular nonlinear-optical response. In this contribution, we investigate the two-molecule cascaded second hyperpolarizability and show that it will never exceed the fundamental limit of a single molecule with the same number of electrons as the two-molecule system. We show the apparent divergence behavior of the cascading contribution to the second hyperpolarizability vanishes when properly taking into account the intermolecular interactions. Although cascading can never lead to a larger nonlinear-optical response than a single molecule, it provides alternative molecular design configurations for creating materials with large third-order susceptibilities that may be difficult to design into a single molecule.Comment: 13 pages, 9 figures, 1 tabl

    High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    Full text link
    We present a generic approach for treating the effect of nuclear motion in the high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4_4 and CD4_4 and thereby provide direct theoretical support for a recent experiment [Baker {\it et al.}, Science {\bf 312}, 424 (2006)] that uses high-order harmonic generation to probe the ultra-fast structural nuclear rearrangement of ionized methane.Comment: 6 pages, 6 figure

    Molecular Dynamics Simulation of Polymer-Metal Bonds

    Get PDF
    Molecular simulation is becoming a very powerful tool for studying dynamic phenomena in materials. The simulation yields information about interaction at length and time scales unattainable by experimental measurements and unpredictable by continuum theories. This is especially meaningful when referring to bonding between a polymer and a metal substrate. A very important characteristic of polymers is that their physical properties do not rely on the detailed chemical structure of the molecular chains but only on their flexibility, and accordingly they will be able to adopt different conformations. In this paper, a molecular simulation of the bonding between vinyl ester polymer and steel is presented. Four different polymers with increasing chain lengths have been studied. Atomic co-ordinates are adjusted in order to reduce the molecular energy. Conformational changes in the macromolecules have been followed to obtain the polymer pair correlation function. Radius of gyration and end-to-end distance distributions of the individual chains have been used as a quantitative measurement of their flexibility. There exists a correlation between flexibility of the molecular chains and the energy of adhesion between the polymer and the metal substrate. Close contacts between the two materials are established at certain points but every atom up to a certain distance from the interface contributes to the total value of the adhesion energy of the system
    • …
    corecore