6,202 research outputs found

    Highly-tunable formation of nitrogen-vacancy centers via ion implantation

    Full text link
    We demonstrate highly-tunable formation of nitrogen-vacancy (NV) centers using 20 keV 15N+ ion implantation through arrays of high-resolution apertures fabricated with electron beam lithography. By varying the aperture diameters from 80 to 240 nm, as well as the average ion fluences from 5 x 10^10 to 2 x 10^11 ions/cm^2, we can control the number of ions per aperture. We analyze the photoluminescence on multiple sites with different implantation parameters and obtain ion-to-NV conversion yields of 6 to 7%, consistent across all ion fluences. The implanted NV centers have spin dephasing times T2* ~ 3 microseconds, comparable to naturally occurring NV centers in high purity diamond with natural abundance 13C. With this technique, we can deterministically control the population distribution of NV centers in each aperture, allowing for the study of single or coupled NV centers and their integration into photonic structures.Comment: Related papers at http://pettagroup.princeton.ed

    Growing Better Crops of Barley.

    Get PDF
    10 p

    Agronomic Performance of Sorghum Hybrids Produced by using Different Male-sterility-inducing Cytoplasms

    Get PDF
    Experiments were conducted in three environments in Iowa to obtain information on the effects of different cytoplasms on agronomic characters in grain sorghum (Sorghum bicolor L. Moench) hybrids. Compared with A1 cytoplasm, A2 and A3 cytoplasms delayed flowering; reduced the percentage of fertile pollen, the number of seeds per panicle, and grain yield; and increased 100-seed weight of the hybrids. Hybrids with A2 or A3 cytoplasm did not differ (p ≥0.05) from those in the A1 cytoplasm for plant height, panicles per plant, or for length, width, and area of the third and fourth leaves from the top of the plant. A2-cytoplasm hybrids did not differ (p ≥0.05) from those in A3 cytoplasm for any of the traits measure. The results are discussed relative to the performance of hybrids with pollen fertility restored and not restored

    Molecular Dynamics Simulation of Polymer-Metal Bonds

    Get PDF
    Molecular simulation is becoming a very powerful tool for studying dynamic phenomena in materials. The simulation yields information about interaction at length and time scales unattainable by experimental measurements and unpredictable by continuum theories. This is especially meaningful when referring to bonding between a polymer and a metal substrate. A very important characteristic of polymers is that their physical properties do not rely on the detailed chemical structure of the molecular chains but only on their flexibility, and accordingly they will be able to adopt different conformations. In this paper, a molecular simulation of the bonding between vinyl ester polymer and steel is presented. Four different polymers with increasing chain lengths have been studied. Atomic co-ordinates are adjusted in order to reduce the molecular energy. Conformational changes in the macromolecules have been followed to obtain the polymer pair correlation function. Radius of gyration and end-to-end distance distributions of the individual chains have been used as a quantitative measurement of their flexibility. There exists a correlation between flexibility of the molecular chains and the energy of adhesion between the polymer and the metal substrate. Close contacts between the two materials are established at certain points but every atom up to a certain distance from the interface contributes to the total value of the adhesion energy of the system

    Charnel practices in medieval England: new perspectives

    Get PDF
    Studies of English medieval funerary practice have paid limited attention to the curation of human remains in charnel houses. Yet analysis of architectural, archaeological and documentary evidence, including antiquarian accounts, suggests that charnelling was more widespread in medieval England than has hitherto been appreciated, with many charnel houses dismantled at the sixteenth-century Reformation. The survival of a charnel house and its human remains at Rothwell, Northamptonshire permits a unique opportunity to analyse charnel practice at a medieval parish church. Employing architectural, geophysical and osteological analysis, we present a new contextualisation of medieval charnelling. We argue that the charnel house at Rothwell, a subterranean room constructed during the thirteenth century, may have been a particularly sophisticated example of an experiment born out of beliefs surrounding Purgatory. Our approach enables re-evaluation of the surviving evidence for charnel practice in England and enhances wider narratives of medieval charnelling across Europe

    Rotational Feshbach Resonances in Ultracold Molecular Collisions

    Full text link
    In collisions at ultralow temperatures, molecules will possess Feshbach resonances, foreign to ultracold atoms, whose virtual excited states consist of rotations of the molecules. We estimate the mean spacing and mean widths of these resonant states, exploiting the fact the molecular collisions at low energy display chaotic motion. As examples, we consider the experimentally relevant molecules O_2, OH, and PbO. The density of s-wave resonant states for these species is quite high, implying that a large number of narrow resonant states will exist.Comment: 4 pages, 2 figure

    Symmetry Scheme for Amino Acid Codons

    Full text link
    Group theoretical concepts are invoked in a specific model to explain how only twenty amino acids occur in nature out of a possible sixty four. The methods we use enable us to justify the occurrence of the recently discovered twenty first amino acid selenocysteine, and also enables us to predict the possible existence of two more, as yet undiscovered amino acids.Comment: 18 pages which include 4 figures & 3 table

    Partition function of two- and three-dimensional Potts ferromagnets for arbitrary values of q>0

    Full text link
    A new algorithm is presented, which allows to calculate numerically the partition function Z_q of the d-dimensional q-state Potts models for arbitrary real values q>0 at any given temperature T with high precision. The basic idea is to measure the distribution of the number of connected components in the corresponding Fortuin-Kasteleyn representation and to compare with the distribution of the case q=1 (graph percolation), where the exact result Z_1=1 is known. As application, d=2 and d=3-dimensional ferromagnetic Potts models are studied, and the critical values q_c, where the transition changes from second to first order, are determined. Large systems of sizes N=1000^2 respectively N=100^3 are treated. The critical value q_c(d=2)=4 is confirmed and q_c(d=3)=2.35(5) is found.Comment: 4 pages, 4 figures, RevTe
    • …
    corecore