237 research outputs found

    Ab initio statistical mechanics of surface adsorption and desorption: I. H2_2O on MgO (001) at low coverage

    Full text link
    We present a general computational scheme based on molecular dynamics (m.d.) simulation for calculating the chemical potential of adsorbed molecules in thermal equilibrium on the surface of a material. The scheme is based on the calculation of the mean force in m.d. simulations in which the height of a chosen molecule above the surface is constrained, and subsequent integration of the mean force to obtain the potential of mean force and hence the chemical potential. The scheme is valid at any coverage and temperature, so that in principle it allows the calculation of the chemical potential as a function of coverage and temperature. It avoids all statistical mechanical approximations, except for the use of classical statistical mechanics for the nuclei, and assumes nothing in advance about the adsorption sites. From the chemical potential, the absolute desorption rate of the molecules can be computed, provided the equilibration rate on the surface is faster than the desorption rate. We apply the theory by {\em ab initio} m.d. simulation to the case of H2_2O on MgO (001) in the low-coverage limit, using the Perdew-Burke-Ernzerhof (PBE) form of exchange-correlation. The calculations yield an {\em ab initio} value of the Polanyi-Wigner frequency prefactor, which is more than two orders of magnitude greater than the value of 101310^{13} s−1^{-1} often assumed in the past. Provisional comparison with experiment suggests that the PBE adsorption energy may be too low, but the extension of the calculations to higher coverages is needed before firm conclusions can be drawn. The possibility of including quantum nuclear effects by using path-integral simulations is noted.Comment: 11 pages + 10 figure

    First-principles kinetic Monte Carlo simulations for heterogeneous catalysis, applied to the CO oxidation at RuO2(110)

    Full text link
    We describe a first-principles statistical mechanics approach enabling us to simulate the steady-state situation of heterogeneous catalysis. In a first step density-functional theory together with transition-state theory is employed to obtain the energetics of all relevant elementary processes. Subsequently the statistical mechanics problem is solved by the kinetic Monte Carlo method, which fully accounts for the correlations, fluctuations, and spatial distributions of the chemicals at the surface of the catalyst under steady-state conditions. Applying this approach to the catalytic oxidation of CO at RuO2(110), we determine the surface atomic structure and composition in reactive environments ranging from ultra-high vacuum (UHV) to technologically relevant conditions, i.e. up to pressures of several atmospheres and elevated temperatures. We also compute the CO2 formation rates (turnover frequencies). The results are in quantitative agreement with all existing experimental data. We find that the high catalytic activity of this system is intimately connected with a disordered, dynamic surface ``phase'' with significant compositional fluctuations. In this active state the catalytic function results from a self-regulating interplay of several elementary processes.Comment: 18 pages including 9 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    The sticking probability of D2O-water on ice: Isotope effects and the influence of vibrational excitation

    Get PDF
    International audienceThe present study measures the sticking probability of heavy water (D2O) on H2O- and on D2O-ice and probes the influence of selective OD-stretch excitation on D2O sticking on these ices. Molecular beam techniques are combined with infrared laser excitation to allow for precise control of incident angle, translational energy, and vibrational state of the incident molecules. For a translational energy of 69 kJ/mol and large incident angles (θ ≥ 45°), the sticking probability of D2O on H2O-ice was found to be 1% lower than on D2O-ice. OD-stretch excitation by IR laser pumping of the incident D2O molecules produces no detectable change of the D2O sticking probability (<10−3). The results are compared with other gas/surface systems for which the effect of vibrational excitation on trapping has been probed experimentally

    Structure, stability, and mobility of small Pd clusters on the stoichiometric and defective TiO2_2 (110) surfaces

    Full text link
    We report on the structure and adsorption properties of Pdn_n (n=1−4n=1-4) clusters supported on the rutile TiO2_2 (110) surfaces with the possible presence of a surface oxygen vacancy or a subsurface Ti-interstitial atom. As predicted by the density functional theory, small Pd clusters prefer to bind to the stoichiometric titania surface or at sites near subsurface Ti-interstitial atoms. The adsorption of Pd clusters changes the electronic structure of the underlying surface. For the surface with an oxygen vacancy, the charge localization and ferromagnetic spin states are found to be largely attenuated owing to the adsorption of Pd clusters. The potential energy surfaces of the Pd monomer on different types of surfaces are also reported. The process of sintering is then simulated via the Metropolis Monte Carlo method. The presence of oxygen vacancy likely leads to the dissociation of Pd clusters. On the stoichiometric surface or surface with Ti-interstitial atom, the Pd monomers tend to sinter into larger clusters, whereas the Pd dimer, trimer and tetramer appear to be relatively stable below 600 K. This result agrees with the standard sintering model of transition metal clusters and experimental observations.Comment: 27 pages, 11 figure

    On the statistical mechanics of prion diseases

    Full text link
    We simulate a two-dimensional, lattice based, protein-level statistical mechanical model for prion diseases (e.g., Mad Cow disease) with concommitant prion protein misfolding and aggregation. Our simulations lead us to the hypothesis that the observed broad incubation time distribution in epidemiological data reflect fluctuation dominated growth seeded by a few nanometer scale aggregates, while much narrower incubation time distributions for innoculated lab animals arise from statistical self averaging. We model `species barriers' to prion infection and assess a related treatment protocol.Comment: 5 Pages, 3 eps figures (submitted to Physical Review Letters

    Investigating the conformational stability of prion strains through a kinetic replication model

    Get PDF
    Prion proteins are known to misfold into a range of different aggregated forms, showing different phenotypic and pathological states. Understanding strain specificities is an important problem in the field of prion disease. Little is known about which PrP(Sc) structural properties and molecular mechanisms determine prion replication, disease progression and strain phenotype. The aim of this work is to investigate, through a mathematical model, how the structural stability of different aggregated forms can influence the kinetics of prion replication. The model-based results suggest that prion strains with different conformational stability undergoing in vivo replication are characterizable in primis by means of different rates of breakage. A further role seems to be played by the aggregation rate (i.e. the rate at which a prion fibril grows). The kinetic variability introduced in the model by these two parameters allows us to reproduce the different characteristic features of the various strains (e.g., fibrils' mean length) and is coherent with all experimental observations concerning strain-specific behavior
    • …
    corecore