22 research outputs found

    Fractional Sobolev-Poincaré inequalities in irregular domains

    Get PDF
    This paper is devoted to the study of fractional (q, p)-Sobolev-Poincaré in- equalities in irregular domains. In particular, the author establishes (essentially) sharp fractional (q, p)-Sobolev-Poincaré inequalities in s-John domains and in domains satisfying the quasihyperbolic boundary conditions. When the order of the fractional derivative tends to 1, our results tend to the results for the usual derivatives. Furthermore, the author verifies that those domains which support the fractional (q, p)-Sobolev-Poincaré inequalities together with a separation property are s-diam John domains for certain s, depending only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P., Sobolev-Poincaré implies John, Math. Res. Lett., 2(5), 1995, 577–593] is also pointed out

    Pointwise estimates to the modified Riesz potential

    Get PDF
    In a smooth domain a function can be estimated pointwise by the classical Riesz potential of its gradient. Combining this estimate with the boundedness of the classical Riesz potential yields the optimal Sobolev-Poincar, inequality. We show that this method gives a Sobolev-Poincar, inequality also for irregular domains whenever we use the modified Riesz potential which arise naturally from the geometry of the domain. The exponent of the Sobolev-Poincar, inequality depends on the domain. The Sobolev-Poincar, inequality given by this approach is not sharp for irregular domains, although the embedding for the modified Riesz potential is optimal. In order to obtain the results we prove a new pointwise estimate for the Hardy-Littlewood maximal operator.Peer reviewe

    Weighted Poincaré inequalities and Minkowski content

    No full text

    Iterated Log-scale Orlicz-Hardy Inequalities

    Get PDF
    We relate Orlicz-Hardy inequalities on a Euclidean domain to fatness conditions on the complement. For certain iterated log-scale distortions of Ln, this relationship is necessary and sufficient, extending results of Buckley and Koskela, and others
    corecore