4,726 research outputs found

    Scanning probe microscopy imaging of metallic nanocontacts

    Full text link
    We show scanning probe microscopy measurements of metallic nanocontacts between controlled electromigration cycles. The nanowires used for the thinning process are fabricated by shadow evaporation. The highest resolution obtained using scanning force microscopy is about 3 nm. During the first few electromigration cycles the overall slit structure of the nanocontact is formed. The slit first passes along grain boundaries and then at a later stage vertically splits grains in the course of consuming them. We find that first the whole wire is heated and later during the thinning process as the slit forms the current runs over several smaller contacts which needs less power.Comment: 4 pages, 4 figure

    Epitaxial Growth of Pentacene on Alkali Halide Surfaces Studied by Kelvin Probe Force Microscopy

    Full text link
    In the field of molecular electronics thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. A control of the structural and electronic properties of the thin films is required for a reliable operating mode of such devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electronic properties of pentacene on KBr(001) and KCl(001) surfaces. Mainly molecular islands of upright standing pentacene are formed, whereas a new phase of tilted molecules appear near step edges on some KBr samples. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density-functional theory calculations. Large LCPD are found between the substrate and the differently oriented molecules, which may be explained by a partial charge transfer from the pentacene to the surface. The monitoring of the changes of the pentacene islands during dewetting shows that multilayers build up at the expense of monolayers. Moreover, in the Kelvin images, previously unknown line defects appear, which unveil the epitaxial growth of pentacene crystals.Comment: This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in ACSNano, copyright American Chemical Society after peer review. To access the final edited and published work see doi belo

    A multi-scenario Lagrangian trajectory analysis to identify source regions of the Asian tropopause aerosol layer on the Indian subcontinent in August 2016

    Get PDF
    The Asian tropopause aerosol layer (ATAL) is present during the Asian summer monsoon season affecting the radiative balance of the atmosphere. However, the source regions and transport pathways of ATAL particles are still uncertain. Here, we investigate transport pathways from different regions at the model boundary layer (MBL) to the ATAL by combining two Lagrangian transport models (CLaMS, Chemical Lagrangian Model of the Stratosphere; MPTRAC, Massive-Parallel Trajectory Calculations) with balloon-borne measurements of the ATAL performed by the Compact Optical Backscatter Aerosol Detector (COBALD) above Nainital (India) in August 2016. Trajectories are initialised at the measured location of the ATAL and calculated 90 d backwards in time to investigate the relation between the measured, daily averaged, aerosol backscatter ratio and source regions at the MBL. Different simulation scenarios are performed to find differences and robust patterns when the reanalysis data (ERA5 or ERA-Interim), the trajectory model, the vertical coordinate (kinematic and diabatic approach) or the convective parameterisation are varied. The robust finding among all scenarios is that the largest continental air mass contributions originate from the Tibetan Plateau and the Indian subcontinent (mostly the Indo-Gangetic Plain), and the largest maritime air mass contributions in Asia come from the western Pacific (e.g. related to tropical cyclones). Additionally, all simulation scenarios indicate that the transport of maritime air from the tropical western Pacific to the region of the ATAL lowers the backscatter ratio (BSR) of the ATAL, while most scenarios indicate that the transport of polluted air from the Indo-Gangetic Plain increases the BSR. While the results corroborate key findings from previous ERA-Interim-based studies, they also highlight the variability in the contributions of different MBL regions to the ATAL depending on different simulation scenarios.</p

    The seaweeds Fucus vesiculosus and Ascophyllum nodosum are significant contributors to coastal iodine emissions

    Get PDF
    Based on the results of a pilot study in 2007, which found high mixing ratios of molecular iodine (I2) above the intertidal macroalgae (seaweed) beds at Mweenish Bay (Ireland), we extended the study to nine different locations in the vicinity of Mace Head Atmospheric Research Station on the west coast of Ireland during a field campaign in 2009. The mean values of \chem{I_2} mixing ratio found above the macroalgae beds at nine different locations ranged from 104 to 393 ppt, implying a high source strength of I2. Such mixing ratios are sufficient to result in photochemically driven coastal new-particle formation events. Mixing ratios above the Ascophyllum nodosum and Fucus vesiculosus beds increased with exposure time: after 6 h exposure to ambient air the mixing ratios were one order of magnitude higher than those initially present. This contrasts with the emission characteristics of Laminaria digitata, where most I2 was emitted within the first half hour of exposure. Discrete in situ measurements (offline) of I2 emission from ambient air-exposed chamber experiments of L. digitata, A. nodosum and F. vesiculosus substantially supported the field observations. Further online and time-resolved measurements of the I2 emission from O3-exposed macroalgal experiments in a chamber confirmed the distinct I2 emission characteristics of A. nodosum and F. vesiculosus compared to those of L. digitata. The emission rates of A. nodosum and F. vesiculosus were comparable to or even higher than L. digitata after the initial exposure period of ~20–30 min. We suggest that A. nodosum and F. vesiculosus may provide an important source of photolabile iodine in the coastal boundary layer and that their impact on photochemistry and coastal new-particle formation should be reevaluated in light of their longer exposure at low tide and their widespread distribution

    The X-ray Telescope of CAST

    Get PDF
    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.Comment: 19 pages, 25 figures and images, replaced by the revised version accepted for publication in New Journal of Physic
    • …
    corecore