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Abstract. Based on the results of a pilot study in 2007, which
found high mixing ratios of molecular iodine (I2) above the
intertidal macroalgae (seaweed) beds at Mweenish Bay (Ire-
land), we extended the study to nine different locations in the
vicinity of Mace Head Atmospheric Research Station on the
west coast of Ireland during a field campaign in 2009. The
mean values of I2 mixing ratio found above the macroalgae
beds at nine different locations ranged from 104 to 393 ppt,
implying a high source strength of I2. Such mixing ratios are
sufficient to result in photochemically driven coastal new-
particle formation events. Mixing ratios above theAscophyl-
lum nodosumandFucus vesiculosusbeds increased with ex-
posure time: after 6 h exposure to ambient air the mixing ra-
tios were one order of magnitude higher than those initially
present. This contrasts with the emission characteristics of
Laminaria digitata, where most I2 was emitted within the
first half hour of exposure. Discrete in situ measurements
(offline) of I2 emission from ambient air-exposed chamber
experiments ofL. digitata, A. nodosumand F. vesiculosus
substantially supported the field observations. Further on-
line and time-resolved measurements of the I2 emission from
O3-exposed macroalgal experiments in a chamber confirmed
the distinct I2 emission characteristics ofA. nodosumand

F. vesiculosuscompared to those ofL. digitata. The emis-
sion rates ofA. nodosumandF. vesiculosuswere comparable
to or even higher thanL. digitata after the initial exposure
period of∼20–30 min. We suggest thatA. nodosumandF.
vesiculosusmay provide an important source of photolabile
iodine in the coastal boundary layer and that their impact on
photochemistry and coastal new-particle formation should be
reevaluated in light of their longer exposure at low tide and
their widespread distribution.

1 Introduction

Brown algae include kelps of the genusLaminaria, the
strongest biological accumulators of iodine currently known.
Laminaria species (Laminaria spp.) are a key biogeochem-
ical pump for the transfer of iodine from the sea to the at-
mosphere (K̈upper et al., 2011).Laminaria accumulates io-
dide for the provision of an extracellular antioxidant. Its re-
action with O3 on the thallus surface results in the release
of I2 (Küpper et al., 2008). However, the iodine metabolism
of other brown algae and their role in marine–atmospheric
halogen transfer is much less well understood. The current
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5256 R.-J. Huang et al.: Significant contributors of coastal iodine

interest in tropospheric iodine chemistry was initiated by ob-
servations of iodine oxide (IO) – a product of iodine atom
reaction with O3 – in the marine boundary layer (MBL) at
Mace Head, Ireland (Alicke et al., 1999). Reactive iodine can
affect the tropospheric oxidizing capacity through catalytic
destruction of O3, changing the NO2 / NO and HO2 / HO ra-
tios, and by reactivating chlorine and bromine from sea salt
aerosol (Vogt et al., 1999; McFiggans et al., 2000; Bloss
et al., 2005; Saiz-Lopez et al., 2008). The photochemically
driven reaction of iodine and O3 also results in iodine oxide
particle (IOP) formation.

Coastal new-particle formation via secondary gas-to-
particle conversion is an important process determining the
concentration of atmospheric aerosols and, ultimately, the
concentration of cloud condensation nuclei (CCN) on the re-
gional scale (O’Dowd and Hoffmann, 2005). The nucleation
events generally occur around low tide during daylight and
have been known to lead to ultrafine particle number concen-
trations in excess of 106 particles cm−3 (O’Dowd and Hoff-
mann, 2005). In recent years, numerous studies have shown
that the coastal particle bursts are closely linked to iodine
emission from low-tidal macroalgae exposure (e.g., McFig-
gans et al., 2004; Sellegri et al., 2005; Saiz-Lopez et al.,
2006a; Huang et al., 2010c; McFiggans et al., 2010). A clear
negative correlation between IO (the precursor of IOP) and
tidal height, and a positive correlation between IO and so-
lar irradiation, have been observed (Carpenter et al., 2001;
Saiz-Lopez et al., 2006b; Huang et al., 2010b; Commane et
al., 2011). The emission of iodocarbons such as CH2I2 from
macroalgae was first proposed to be the source of photolabile
iodine (Hoffmann et al., 2001; Carpenter, 2003). However,
recent field measurements and laboratory experiments show
that the emission of molecular iodine (I2) is the dominant
source of iodine and is responsible for the observed iodine
chemistry in the coastal MBL (McFiggans et al., 2004; Saiz-
Lopez and Plane, 2004; Sellegri et al., 2005; Huang et al.,
2010b, c; Monahan et al., 2012).

macroalgae
emission
−−−−→ I2

photolysis
−−−−−→ I·

O3
−→ IO

IO/OIO
−−−−→
−−−−−→
−−−−−−→ I2Oy (y = 2−5) (R1)

nucleation
−−−−−→ particles/clusters(∼ 1nm)

growth
−−−→
−−−−→
−−−−−−→ CCN

Measurements of I2 mixing ratios have so far been reported
at four different coastal locations: Mace Head and vicin-
ity, Ireland (Saiz-Lopez and Plane, 2004; Saiz-Lopez et al.,
2006a, b; Huang et al., 2010b, c), Roscoff, France (Leigh et
al., 2010; McFiggans et al., 2010), O Grove, Galicia, Spain
(Mahajan et al., 2011), and La Jolla, California (Finley and
Saltzman, 2008). The observations of high concentrations of
I2 at Roscoff and O Grove are thought to be a consequence
of large I2 emissions fromLaminariaspp. such asL. digitata
andL. hyperborea, which are the dominant species at these
measurement sites.

Since the daytime reaction cycle of iodine in the coastal
MBL is initiated by rapid photolysis of I2, measurement

of iodine close to its source is required for understanding
the contribution of macroalgal iodine emissions to local at-
mospheric processes. However, such field observations are
scarce because measurement of I2 directly above the algal
beds is challenging. Efforts have therefore been made to
study the I2 emission profiles of macroalgae through labo-
ratory incubation experiments (Dixneuf et al., 2009; Ball et
al., 2010; Nitschke et al., 2011; Kundel et al., 2012b; Ashu-
Ayem et al., 2012) in order to understand the emission mech-
anism and to better estimate the flux of I2 from macroal-
gae. These studies have mainly focused onL. digitata as
this species accumulates iodine at up to around 5 % of its
dry weight (Küpper et al., 1998; Gall et al., 2004) and emits
large amounts of I2 when exposed to ambient air; the results
showed a high variability of I2 emission rates, with values
ranging from 3 to 2500 pmol min−1 g fresh weight−1 (FW−1)
(Bale et al., 2008; Ball et al., 2010; Ashu-Ayem et al., 2012).
The I2 emission profiles ofL. digitataare characterized by an
intense initial burst when first exposed to air, followed by an
approximately exponential decay over a short period of about
20–30 min (Bale et al., 2008; Dixneuf et al., 2009; Ball et al.,
2010; Nitschke et al., 2011; Ashu-Ayem et al., 2012).

During a field campaign at Mweenish Bay, Ireland, in Au-
gust/September 2007, a pilot study of I2 emissions was car-
ried out directly above macroalgal beds ofAscophyllum no-
dosumandFucus vesiculosuslocated in the mid-littoral zone.
Elevated I2 mixing ratios of up to 302 ppt were observed after
the algae had been exposed to air for several hours (Huang
et al., 2010b). This behavior differs from the emission char-
acteristics ofL. digitata found in laboratory incubation ex-
periments, where I2 emissions are small or stop completely
after prolonged exposure (Dixneuf et al., 2009; Ball et al.,
2010; Nitschke et al., 2011). We hypothesized that the tem-
poral behavior of I2 emission ofA. nodosumandF. vesicu-
losuswould likely be different and of longer duration than
that of L. digitata. Both A. nodosumandF. vesiculosusare
widely distributed throughout the world and exposed to air
even at moderately low tidal levels since they inhabit the mid-
to upper littoral regions. If the emission indeed increases with
time, the impact of these two macroalgae on the local at-
mospheric iodine chemistry could be more significant than
currently believed. This finding would likely apply to nu-
merous other brown algae (Phaeophyceae) species, implying
greater macroalgal sea–air transfer of iodine than expected
from Laminaria emissions only. Moreover, different emis-
sion characteristics compared toLaminaria spp. may pro-
vide an explanation for the frequently observed new-particle
formation events at the west coast of Ireland, considering
the large population ofA. nodosumandF. vesiculosusdis-
tributed there. For example, during a field campaign in 2007
enhanced nucleation events were observed in 14 out of 23
days of measurements at Mweenish Bay, whereA. nodosum
andF. vesiculosusare dominant species. The ultrafine parti-
cle bursts typically lasted for about 4–6 h, which was closely
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Fig. 1. The denuder sampling sites on the west coast of Ireland (revised from Google earth). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The denuder sampling sites on the west coast of Ireland (re-
vised from Google earth).

related to the diurnal variation of the exposure period of these
two species (Huang et al., 2010c).

In this paper, we present results of a 2-week field cam-
paign carried out on the west coast of Ireland in August 2009
with a special focus on the investigation of mixing ratios and
emission characteristics of I2 above the macroalgae beds in
the field. The results derived from chamber experiments ofL.
digitata, A. nodosumandF. vesiculosusexposed to ambient
air and to ozone are also presented.

2 Experimental

2.1 Sampling sites

Measurements were carried out at nine different sites in the
vicinity of the Mace Head Atmospheric Research Station on
the west coast of Ireland (see Fig. 1) from 17 August to
28 August 2009. This area is characterized by a high abun-
dance (but discrete zonation) of brown macroalgae along the
coastline and is representative of typical North Atlantic rocky
seashores in terms of the macroalgal exposure time.A. no-
dosumandF. vesiculosusare dominant algal species at sites
#1, #2, and #4–7 and can be exposed to the air for up to 6–
8 h during low tides (average exposure∼4 h at normal low
tides). NoLaminaria spp. were observed in the immediate
vicinity of these sites. In contrast, mostL. digitata algae at
sites #3 and #8 are extensively exposed only at around lowest
water (spring low tides) and for a much shorter period (∼20–
30 min). Measurements at site #9 (dominated byA. nodosum
andF. vesiculosus) were carried out whenLaminariaspp. in
the nearby site #8 were submerged in seawater. Note that at
all sampling sites samples were taken when the wind came

from the sea (wind direction 179◦–287◦). The wind speed
ranged between 5–11 m s−1.

2.2 Denuder sampling with GC–MS quantification

Molecular iodine was measured using a diffusion denuder
system in combination with a gas chromatography–mass
spectrometry (GC–MS) method, which provides “point” in
situ concentrations of I2 at the sampling site. Details of
this denuder/GC–MS method are given in Huang and Hoff-
mann (2009), and it will be only briefly described here. Am-
bient I2 samples were collected at a flow rate of 500 mL
min−1 for 5–30 min in brown denuder tubes (6 mm i.d.,
50 cm length) which were uniformly coated with∼11 mg
α-cyclodextrin (α-CD) and trace129I−. The potential inter-
ference iodine species such as ICl and HOI were removed
by coupling a 1,3,5-trimethoxybenzene-coated denuder up-
stream of theα-CD/129I− coated denuder (data not shown
here). The inlet of the denuder was set up very close to
the algal beds (∼5–10 cm) during sampling to minimize po-
tential photolysis of I2. Although Saiz-Lopez et al. (2004)
calculated a lifetime of I2 of about 8 s under noontime
clear sky at Mace Head for this time of year, the relatively
low solar flux (as indicated in Fig. 3) for most measure-
ments implies a lifetime that is several times longer (i.e.,
the low irradiation (< 200 W m−2) during most of our mea-
surements implies a much longer I2 lifetime of over 40 s,
while in four of the measurements the I2 lifetime is shorter
and around 12–21 s). After sampling, the open ends of the
denuders were sealed with PP caps and kept under refrig-
eration until analysis. In the laboratory, the samples were
eluted with five 2.0 mL portions of ultrapure water into a
25 mL flask to which 500 µL of phosphate buffer (pH 6.4),
100 µL of 2,4,6-tribromoaniline (2.5 mg L−1, internal stan-
dard), 400 µL of sodium 2-iodosobenzoate, and 300 µL of
N ,N -dimethylaniline were added. The solution was shaken
at room temperature for about 120 min, leading to>98 %
conversion of I2 into 4-iodo-N ,N -dimethylaniline (Huang et
al., 2010a). Finally, the solution was extracted with 100 µL
of cyclohexane. One (1.0) µL of the extraction solution was
injected into a GC–MS system (Agilent 6850 GC interfaced
to a 5973N MSD, Agilent Technologies, Santa Clara, CA).
A Rtx-5MS fused-silica capillary column (Restek Co., Bad
Homburg, Germany) was used for chromatographic separa-
tion, and the MS was run in selected ion monitoring (SIM)
mode to enhance the sensitivity. The detection limit was gen-
erally below 1.0 ppt during this campaign, and the collection
efficiency was greater than 98 %. The precision of the method
for the determination of I2 is < ± 10 %. The reported val-
ues in this study have been corrected for the mean value of
blanks, which were based on the analysis of denuders that
had been sealed throughout the campaign.

www.atmos-chem-phys.net/13/5255/2013/ Atmos. Chem. Phys., 13, 5255–5264, 2013
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Table 1.The mixing ratio of I2 at different sites on the west coast of Ireland.

Site # I2 (ppt), individual I2 (ppt), Number Dominant Location
measurements mean value of sample macroalgae

1 31, 42, 74, 112, 153, 174, 185, 173 13 A. nodosumandF. vesiculosus 53◦18′33′′ N, 9◦49′41′′ W
204, 214, 219, 280, 288, 290

2 127, 156 141 2 A. nodosumandF. vesiculosus 53◦18′39′′ N, 9◦50′34′′ W
3 239, 547 393 2 L. digitata 53◦17′36′′ N, 9◦50′12′′ W
4 95, 129 112 3 A. nodosumandF. vesiculosus 53◦22′51′′ N, 9◦48′57′′ W
5 117, 150 133 2 A. nodosumandF. vesiculosus 53◦25′04′′ N, 9◦49′14′′ W
6 134, 184 159 2 A. nodosumandF. vesiculosus 53◦24′26′′ N, 9◦54′56′′ W
7 85, 127 106 2 A. nodosumandF. vesiculosus 53◦22′59′′ N, 9◦55′22′′ W
8 209 209 1 L. digitata 53◦19′28′′ N, 9◦54′19′′ W
9 90, 118 104 2 A. nodosumandF. vesiculosus 53◦19′29′′ N, 9◦54′17′′ W

2.3 Ambient air chamber experiments

L. digitata specimens were collected at Mweenish Bay dur-
ing spring low tide on 24 August 2009. Since thalli were
tightly attached to the rock through their rhizoids, rock and
thalli were taken together to avoid injuring the alga.Lam-
inaria thalli were kept in seawater during a short transport
time of ∼10 min and then stored in running seawater in a
transparent tank placed outside the Martin Ryan Institute,
Carna, (MRI-Carna) building, where macroalgae were ex-
posed to the natural diurnal light and temperature cycle. The
seawater was freshly pumped from the sea and close to the
sea temperature in the area. Algal thalli were used within
4 days of collection. When required for the incubation ex-
periments, the whole alga together with its anchoring rock
was removed from the tank and placed into a 35 L translu-
cent polyethylene chamber. Ambient air (O3 mixing ratio
35–40 ppb) was then drawn through the chamber, and the
emitted I2 was collected using the denuder at a flow rate
of 500 mL min−1. After the first exposure of 20 min and air
sample collection, the alga was removed from the chamber
and exposed to outside ambient air for a specified duration
of up to several hours (similar to what it would experience
during tidal exposure). Afterwards the alga was placed back
into the chamber and its emission was measured again.

Whole, submergedA. nodosumand F. vesiculosusalgae
were taken directly from the intertidal zone outside the MRI-
Carna building and used immediately. Again, algal thalli
were usually taken together with small rocks attached to their
holdfasts. The transit time from collection in the intertidal
zone to beginning an experiment was around 5–10 min, dur-
ing which algal thalli were kept in seawater. The alga and
its anchoring rock were weighed before and after the exper-
iments, and then the alga mass alone was weighed after de-
taching the rock. About 300–500 g algae were used in indi-
vidual experiments. When air samples in the chamber were
taken, the I2 mixing ratios in the ambient air outside the
chamber were measured simultaneously to correct for back-
ground I2.

3 Results and discussion

3.1 I2 mixing ratios on the west coast of Ireland

At the Mace Head station intense bursts of new-particles have
been frequently observed, with concentrations often reach-
ing in excess of 106 cm−3 (O’Dowd and Hoffmann et al.,
2005). Airborne measurements further reveal that such par-
ticle bursts are almost ubiquitous along the coastline in the
vicinity of Mace Head (O’Dowd et al., 2007). Close to the
plume head the growth rate of nucleated particles can be as
high as several hundred nanometers per hour, indicating the
presence of a high concentration of precursor gases. Table 1
shows the denuder results from nine different sampling sites
in the vicinity of Mace Head station. It is evident that ele-
vated levels of I2 were indeed present over the local source
regions (macroalgae beds). Based on model study predictions
that 80–100 ppt I2 is required for iodine oxide particle bursts
(Saiz-Lopez et al., 2006a), the mixing ratios of I2, ranging
from 104 ppt to 393 ppt (see Table 1), observed in all sam-
pling sites would be sufficient to result in photochemically
driven new-particle formation events. Note that the measure-
ments given in Table 1 simply show elevated levels of I2
when macroalgae beds are exposed to ambient air. They were
collected under specific conditions and should not be taken
as being more generally representative.

The I2 mixing ratio of 547 ppt (Fig. 2) measured over a
short time period of 5 min immediately after exposure of the
L. digitatabeds is one of the highest observations reported to
date. Similar “point” in situ techniques at other coastal loca-
tions have also found high mixing ratios at sites close toLam-
inaria spp. belts: a daytime maximum of 350± 100 ppt was
reported at O Grove (Mahajan et al., 2011) and 50 ppt was
observed at Roscoff (McFiggans et al., 2010). Although it is
difficult to compare observations made at different geograph-
ical locations, in particular where observations were obtained
at different distances downstream of highly localized emis-
sion sources, considering the dilution effect, the short pho-
tolysis lifetime and potential chemical recycling of I2, these

Atmos. Chem. Phys., 13, 5255–5264, 2013 www.atmos-chem-phys.net/13/5255/2013/
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measurements are consistent with the current consensus that
Laminariaspp. are very strong emitters of I2. What the ob-
servations reported in Table 1 also indicate, however, is that
the I2 mixing ratios observed above theA. nodosumandF.
vesiculosusmixed beds are a significant proportion of those
above theL. digitatabeds (with an average of 134 ppt versus
301 ppt, respectively). This observation is somehow differ-
ent from the macroalgae incubation experiments of Ball et
al. (2010) which showed that I2 emissions fromA. nodosum
and F. vesiculosuswere several orders of magnitude lower
than those fromLaminariaspp. We attribute the enhanced I2
emissions ofA. nodosumandF. vesiculosusto the longer ex-
posure period in our study and the distinct time-dependent
emission characteristics ofA. nodosumand F. vesiculosus
discussed below. We note that, in the vicinity of Mace Head,
A. nodosumand F. vesiculosusare extensively exposed to
the air during most low tides, whereas the exposure ofLami-
naria beds is limited to extremely low-water (spring low tide)
events. The different exposure profiles, together with the el-
evated mixing ratios observed, leads us to suggest thatA. no-
dosumandF. vesiculosuscould be the main sources of I2 in
the vicinity of Mace Head (see Fig. 1) during most low tides,
whereasLaminariaspp. would be the major contributor to I2
emissions at spring low tides. This suggestion is supported by
the observation that new-particle formation events occur on
more than half of the days at Mace Head and are therefore not
limited to spring low tides. Moreover, the new-particle for-
mation events observed at Mace Head station are often char-
acterized by number size distributions with “apple” (i.e., the
shape of the number concentration vs. time plot resembles
an apple), “bump” (i.e., particles do not usually grow larger
than 10 nm in diameter, and the shape of the number concen-
tration vs. time plot resembles a bump) or “mixed” (i.e., the
formation of intermediate air ions is clearly observed, but the
events cannot be classified as banana-, apple- or bump-type)
shapes (Vana et al., 2008). Ehn et al. (2010) explained these
particle formation characteristics on the basis of an inhomo-
geneous distribution of precursor gases. Our findings of high
I2 mixing ratios above theA. nodosumand F. vesiculosus
beds, when taken together with the inhomogeneous distribu-
tion of these two macroalgae species (whose habitat is re-
stricted to a number of small areas around Mace Head, e.g.,
Mweenish Bay, Glinsk and Roundstone), are consistent with
the suggestion of Ehn et al. (2010).

3.2 I2 emission characteristics

3.2.1 Field observations

The emission characteristic is one of the most important fac-
tors determining iodine flux from macroalgae to the atmo-
sphere. However, relevant studies are scarce and have mainly
concentrated onL. digitata (Dixneuf et al., 2009; Ball et al.,
2010; Nitschke et al., 2011; Ashu-Ayem et al., 2012). Lab-
oratory incubation experiments have revealed that I2 emis-
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Fig. 2. I2 mixing ratio against the exposure time of L. digitata beds observed at site #3. Here, 
the first sample (from 0-5 min) was taken when L. digitata was just exposed to air. Following 
an interval of 10 min for setting up the second sampler, the second sample (from 15-20 min) 
was taken. The data set is limited to two measurements because the L. digitata beds were 
accessible only at a single spring low tide at Mweenish Bay, which explains the lack of error 
bars in this Figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. I2 mixing ratio above the A. nodosum and F. vesiculosus mixed beds observed at 
sampling #1 at Mweenish Bay, Ireland as a function of algal exposure time and solar 

Fig. 2. I2 mixing ratio against the exposure time ofL. digitatabeds
observed at site #3. Here, the first sample (from 0–5 min) was taken
whenL. digitata was just exposed to air. Following an interval of
10 min for setting up the second sampler, the second sample (from
15–20 min) was taken. The data set is limited to two measurements
because theL. digitatabeds were accessible only at a single spring
low tide at Mweenish Bay, which explains the lack of error bars in
this figure.

sions from this species are intense within the first few min-
utes when subjected to air exposure but decrease strikingly
afterwards (Dixneuf et al., 2009; Ball et al., 2010; Nitschke
et al., 2011; Ashu-Ayem et al., 2012). This phenomenon was
also observed in our field observations. As shown in Fig. 2,
the average I2 mixing ratio measured above theL. digitata
beds at Mweenish Bay was 547 ppt over the first 5 min of
exposure, but decreased to 239 ppt over the interval of 15–
20 min.

Figure 3 shows the 2-day temporal profile of I2 emission
(averaged over a 30 min sampling time) at sampling site #1,
dominated byA. nodosumandF. vesiculosus, at Mweenish
Bay. A lower mixing ratio was observed at the beginning of
the ebbing tide when the macroalgae were just exposed to
the ambient air. However, the mixing ratio increased grad-
ually with exposure time, reaching a value of one order of
magnitude higher than the initial value after about 6 h (1/2
tidal cycle). Note that the contribution of nearby macroal-
gae source to the I2 level at the sampling site could be rather
small due to the rapid photochemical destruction of I2, the
efficient dilution during transport and the short distance (5–
10 cm) between the denuder inlet and the macroalgae bed.
This emission profile is markedly different from that ofL.
digitata observed in the present and previous studies (e.g.,
Ashu-Ayem et al., 2012). It may at first appear that the in-
creased emissions of I2 from A. nodosumandF. vesiculosus
at Mweenish Bay are a consequence of elevated O3 concen-
tration in the ambient air, which we observed in our previous
field studies (Huang et al., 2010b). However, this effect is un-
likely to be the case as the O3 concentrations were relatively
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Fig. 3. I2 mixing ratio above the A. nodosum and F. vesiculosus mixed beds observed at 
sampling #1 at Mweenish Bay, Ireland as a function of algal exposure time and solar 

Fig. 3. I2 mixing ratio above theA. nodosumand F. vesiculosus
mixed beds observed at sampling site #1 at Mweenish Bay, Ireland,
as a function of algal exposure time and solar irradiation. Each data
point represents the mean value over a sampling period of 30 min.
Note the symbol solid circle represents data from this work, and
solid diamond represents data from the 2007 campaign (Huang et
al., 2010b). The O3 concentrations in the surrounding air were 35–
39 ppb over the course of measurements.

stable (35–39 ppb, measured by an ozone analyzer, Model
1008-RS, Dasibi Environmental Corp., Glendale, USA) over
two consecutive days (20–21 August 2009). The data mea-
sured at a similar O3 level (36–39 ppb) but from a previous
study in 2007 also fit well into the emission profile. The in-
tensity of solar irradiation had no noticeable impact on the
emission of I2 (see Fig. 3).

3.2.2 Chamber studies

During the campaign, I2 emissions fromL. digitata, A. no-
dosumand F. vesiculosuswere also investigated in a flow
chamber at Mweenish Bay. The algal samples were exposed
to the ambient air that flowed into the chamber to simulate
the natural process of exposure. The results, after correction
for background concentration in the ambient air, show that
the emission rates fromA. nodosumandF. vesiculosusrose
significantly upon prolonged exposure (see Fig. 4a and b)
whereasL. digitata emission rates decreased strikingly over
time (see Fig. 4c). This temporal behavior was observed in
both daytime and nighttime experiments, providing substan-
tial support for the field observations reported above. Fig-
ure 4 also shows that the initial emission rates ofA. nodosum
and ofF. vesiculosuswere relatively constant although dif-
ferent specimens were used. The relative standard deviations
(RSDs) are 12 % (n=3) for A. nodosumand 18.8 % (n=3) for
F. vesiculosus, respectively. In contrast, the initial I2 emis-
sions byL. digitatadiffered significantly between specimens
(RSD 74 %). Variable emissions between plants have been
found in a relatively large sample size (Ashu-Ayem et al.,
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Fig. 4. The time-dependent I2 emission rates ofA. nodosum(a), F.
vesiculosus(b) andL. digitata (c) at daytime and nighttime when
subjected to ambient air exposure in a flow chamber at Mweenish
Bay. Note the difference in scale ofL. digitata emissions and the
lack of error bars in(c) as only one sample was taken for individual
experiments.

2012) and may arise from the inhomogeneous accumulation
of iodine in individual algae. Additionally, iodine emission
differs across parts of the thallus, and Nitschke et al. (2011)
have shown that the stipe ofL. digitataemits up to 19 times
more I2 compared to the distal blade. TheL. digitata#1 stud-
ied here had a bigger and longer stipe thanL. digitata #2
(16 cm length,∼1.5 cm i.d. versus 10 cm length,∼1.2 cm
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i.d.) and would be expected to emit more I2 after correction
for its grams fresh weight.

The time profile of I2 emissions fromL. digitata, A.
nodosumand F. vesiculosuswas further investigated in a
simulation chamber using a recently developed time-of-
flight aerosol mass spectrometer in combination with a
gaseous compound trapping in artificially generated parti-
cle (GTRAP-AMS) method (Kundel et al., 2012a). The mea-
surement system was calibrated using a capillary-based dif-
fusion device as an I2 test gas source (Huang and Hoffmann,
2010). Algae in chamber experiments were directly exposed
to 50 ppb O3. Details of this set of chamber experiments are
given in Kundel et al. (2012b). This online GTRAP-AMS
provided a much higher time resolution compared to the of-
fline denuder method and therefore enables us to look at a
more detailed profile of I2 emissions from macroalgae. The
results (see Fig. 5) provide strong evidence that the I2 emis-
sion rate fromA. nodosumandF. vesiculosusrises with in-
creasing exposure time over a period of hours, whileL. dig-
itata displays the opposite behavior, emitting a strong, short
pulse immediately on exposure. These measurements further
support our findings from field measurements and ambient
air-exposed chamber studies.

3.3 Potential contribution of Fucusand Ascophyllum
seaweeds to coastal iodine level

It is beyond the scope of the present work to investigate the
biochemical mechanism governing the distinct I2 emission
features between different macroalgal species, but it is tempt-
ing to hypothesize that it is linked to different physiological
adaptations ofAscophyllum, Fucusand Laminaria to their
differing positions in the littoral zone.AscophyllumandFu-
cusare intertidal species and get exposed at every low tide,
while Laminaria is a mostly submerged-living species, only
getting exposed during stronger spring tides. The location of
their habitat in the littoral zone governs the frequency and du-
ration of exposure to air at low tide and therefore the extent
of exposure to ozone and desiccation stress. It is clear thatL.
digitata is able to emit much larger amounts of I2 within the
first exposure of∼20–30 min thanA. nodosumandF. vesicu-
losus. However, a major finding of this study is that the emis-
sion rates ofA. nodosumandF. vesiculosusare comparable
to or even higher thanL. digitata after the initial exposure
period (see Figs. 4 and 5) and are sustained over a period
of several hours. Due to a relatively limited dataset, we have
not yet been able to reconstruct detailed emission profiles of
these three macroalgae under natural conditions, nor do we
compare their overall emission rates over an integrated low-
tide period. Leigh et al. (2010) concluded that, in comparison
to Laminariaspp., the contributions fromA. nodosumandF.
vesiculosusto the total I2 emissions were relatively small in
the coastal region around Roscoff by assuming a lower and
constant emission rate throughout the low-tide period (de-
rived from the first exposure period of∼10 min in incuba-

18 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The time-dependent I2 emission rates of A. nodosum (a), F. vesiculosus (b) and L. 
digitata (c) at daytime and nighttime when subjected to ambient air exposure in a flow 
chamber at Mweenish Bay. Note the difference in scale of L. digitata emissions and the lack 
of error bars in (c) as only one sample was taken for individual experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

18 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The time-dependent I2 emission rates of A. nodosum (a), F. vesiculosus (b) and L. 
digitata (c) at daytime and nighttime when subjected to ambient air exposure in a flow 
chamber at Mweenish Bay. Note the difference in scale of L. digitata emissions and the lack 
of error bars in (c) as only one sample was taken for individual experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 18 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The time-dependent I2 emission rates of A. nodosum (a), F. vesiculosus (b) and L. 
digitata (c) at daytime and nighttime when subjected to ambient air exposure in a flow 
chamber at Mweenish Bay. Note the difference in scale of L. digitata emissions and the lack 
of error bars in (c) as only one sample was taken for individual experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.A typical time-dependent I2 emission rate ofA. nodosum(a),
F. vesiculosus(b) andL. digitata (c) when exposed to 50 ppb O3 in
synthetic air in a simulation chamber (modified from Kundel et al.,
2012).

tion studies, taken from Ball et al. (2010)) forA. nodosum
andF. vesiculosus. Nevertheless, these authors also showed
that the I2 mixing ratios calculated from the emissions of
Laminaria spp. were lower than observed values, and sug-
gested the presence of an additional source to account for the
discrepancy. Our results show that upon exposure to 50 ppb
O3 in a synthetic air stream the first 10 min integrated I2
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emission rates ofA. nodosum(0.014 pmol min−1 g FW−1)
and F. vesiculosus(0.049 pmol min−1 gFW−1) are indeed
much lower than that ofL. digitata (4.23 pmol min−1

gFW−1). However, the first 1 h integrated I2 emission rates
are 159, 69, 19 pmol h−1 g FW−1 for L. digitata, A. nodosum
andF. vesiculosus, respectively. Note that the emission rate
is calculated based on one or two samples of each species.
It is expected that the sum of I2 emitted byA. nodosumand
F. vesiculosuscould be comparable to or even larger than
that from L. digitata under natural conditions, considering
their distinct time-dependent emission trends and the longer
exposure time ofA. nodosumandF. vesiculosusin compar-
ison toL. digitata (the former two inhabit upper the littoral
zone, while the latter the sublittoral zone). It should be noted
thatA. nodosumandF. vesiculosus(both Fucales) are com-
monly found on the coasts of the North Atlantic Ocean and
thatFucusspecies are widely distributed along rocky coasts
throughout the world. Therefore, Fucales and other large,
morphologically complex brown algae may provide an im-
portant source for the observed tropospheric iodine level, and
their impact on the photochemistry and coastal new-particle
formation should be reevaluated.

4 Summary

The mixing ratio of I2 above the macroalgae beds at nine
different locations on the west coast of Ireland has been
measured using diffusion denuders in combination with a
gas chromatography–mass spectrometry (GC–MS) method.
The results show the occurrence of elevated I2 levels above
macroalgae beds, ranging from 104 ppt to 393 ppt, which is
in line with a previous pilot study (Huang et al., 2010b). Most
importantly, it is found that the mixing ratio above theA.
nodosumandF. vesiculosusbeds correlates positively with
their exposure time, reaching a value of one order of mag-
nitude higher than the initial emission after exposure to am-
bient air for∼6 h. In contrast, the mixing ratio above theL.
digitatabeds decreases with increasing exposure time, as ob-
served in the present and previous studies. This feature can
be attributed to the distinct time-dependent I2 emission char-
acteristic of macroalgae confirmed in two sets of chamber
experiments. A particularly interesting aspect is the differ-
ent emission profiles over time – ofFucusandAscophyllum
on the one hand, andLaminariaon the other. The results de-
rived from these chamber experiments indicate that the emis-
sion rates ofA. nodosumandF. vesiculosusare comparable
to or even higher than that ofL. digitataafter the initial expo-
sure period of∼20–30 min. Given the longer low-tide expo-
sure time ofA. nodosumandF. vesiculosus(as they usually
inhabit the upper littoral zone and are therefore easily ex-
posed to air) as well as their large distribution on the coasts
of Atlantic and Pacific Oceans, we suggest thatA. nodosum,
F. vesiculosusand possibly other Fucales may provide an
important source for the observed tropospheric iodine level

and that their impact on the photochemistry and coastal new-
particle formation should be reevaluated. Furthermore, more
studies are needed to determine whether other macroalgae
that are often exposed to ambient air during low tide are also
significant contributors to coastal emissions of I2.
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