213 research outputs found

    Oceanic loading of wildfire-derived organic compounds from a small mountainous river

    Get PDF
    Copyright 2008 by the American Geophysical Union.Small mountainous rivers (SMRs) export substantial amounts of sediment into the world's oceans. The concomitant yield of organic carbon (OC) associated with this class of rivers has also been shown to be significant and compositionally unique. We report here excessively high loadings of polycyclic aromatic hydrocarbons (PAHs), lignin, and levoglucosan, discharged from the Santa Clara River into the Santa Barbara Channel. The abundance of PAHs, levoglucosan, and lignin in Santa Barbara Channel sediments ranged from 201.7 to 1232.3 ng gdw−1, 1.3 to 6.9 μg gdw−1, and 0.3 to 2.2 mg per 100 mg of the sedimentary OC, respectively. Assuming a constant rate of sediment accumulation, the annual fluxes of PAHs, levoglucosan, and lignin, to the Santa Barbara Channel were respectively, 885.5 ± 170.2 ng cm−2 a−1, 3.5 ± 1.9 μg cm−2 a−1 and 1.4 ± 0.3 mg per 100 mg OC cm−2 a−1, over ∼30 years. The close agreement between PAHs, levoglucosan, and lignin abundance suggests that the depositional flux of these compounds is largely biomass combustion-derived. To that end, use of the Santa Clara River as a model for SMRs suggests this class of rivers may be one of the largest contributors of pyrolyzed carbon to coastal systems and the open ocean. Wildfire associated carbon discharged from other high yield fluvial systems, when considered collectively, may be a significant source of lignin, pyrolytic PAHs, and other pyrogenic compounds to the ocean. Extrapolating these methods over geologic time may offer useful historical information about carbon sequestration and burial in coastal sediments and affect coastal carbon budgets

    The Eta Chamaeleontis Cluster: Origin in the Sco-Cen OB Association

    Full text link
    A young, nearby compact aggregate of X-ray emitting pre-main sequence stars was recently discovered in the vicinity of eta Cha (B8V). In this paper, we further investigate this cluster: its membership, its environs and origins. ROSAT HRI X-ray data for the cluster's T Tauri stars show high levels of magnetic activity and variability. The cluster has an anomalous X-ray luminosity function compared to other young clusters, deficient in stars with low, but detectable X-ray luminosities. This suggests that many low-mass members have escaped the surveyed core region. Photographic photometry from the USNO-A2.0 catalog indicates that additional, X-ray-quiet members exist in the cluster core region. The components of the eclipsing binary RS Cha, previously modeled in the literature as post-MS with discordant ages, are shown to be consistent with being coeval pre-MS stars. We compute the Galactic motion of the cluster from Hipparcos data, and compare it to other young stars and associations in the fourth Galactic quadrant. The kinematic study shows that the eta Cha cluster, the TW Hya association, and a new group near epsilon Cha, probably originated near the giant molecular cloud complex that formed the two oldest subgroups of the Sco-Cen OB association roughly 10-15 Myr ago. Their dispersal is consistent with the velocity dispersions seen in giant molecular clouds. A large H I filament and dust lane located near eta Cha has been identified as part of a superbubble formed by Sco-Cen OB winds and supernova remnants. The passage of the superbubble may have terminated star-formation in the eta Cha cluster and dispersed its natal molecular gas.Comment: 26 pages, 9 figures, LaTex2.09, ApJ, in press, http://etacha.as.arizona.edu/~eem/etacha/MLF00/index.htm

    An astrocyte-dependent mechanism for neuronal rhythmogenesis

    Full text link
    Communication between neurons rests on their capacity to change their firing pattern to encode different messages. For several vital functions, such as respiration and mastication, neurons need to generate a rhythmic firing pattern. Here we show in the rat trigeminal sensori-motor circuit for mastication that this ability depends on regulation of the extracellular Ca2+ concentration ([Ca2+]e) by astrocytes. In this circuit, astrocytes respond to sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca2+ chelator prevents neurons from generating a rhythmic bursting pattern. This ability is restored by adding S100b, an astrocytic Ca2+-binding protein, to the extracellular space, while application of an anti-S100b antibody prevents generation of rhythmic activity. These results indicate that astrocytes regulate a fundamental neuronal property: the capacity to change firing pattern. These findings may have broad implications for many other neural networks whose functions depend on the generation of rhythmic activity

    Splice Isoforms of the Polyglutamine Disease Protein Ataxin-3 Exhibit Similar Enzymatic yet Different Aggregation Properties

    Get PDF
    Protein context clearly influences neurotoxicity in polyglutamine diseases, but the contribution of alternative splicing to this phenomenon has rarely been investigated. Ataxin-3, a deubiquitinating enzyme and the disease protein in SCA3, is alternatively spliced to encode either a C-terminal hydrophobic stretch or a third ubiquitin interacting motif (termed 2UIM and 3UIM isoforms, respectively). In light of emerging insights into ataxin-3 function, we examined the significance of this splice variation. We confirmed neural expression of several minor 5′ variants and both of the known 3′ ataxin-3 splice variants. Regardless of polyglutamine expansion, 3UIM ataxin-3 is the predominant isoform in brain. Although 2UIM and 3UIM ataxin-3 display similar in vitro deubiquitinating activity, 2UIM ataxin-3 is more prone to aggregate and more rapidly degraded by the proteasome. Our data demonstrate how alternative splicing of sequences distinct from the trinucleotide repeat can alter properties of the encoded polyglutamine disease protein and thereby perhaps contribute to selective neurotoxicity

    Audio-Visual Speech Timing Sensitivity Is Enhanced in Cluttered Conditions

    Get PDF
    Events encoded in separate sensory modalities, such as audition and vision, can seem to be synchronous across a relatively broad range of physical timing differences. This may suggest that the precision of audio-visual timing judgments is inherently poor. Here we show that this is not necessarily true. We contrast timing sensitivity for isolated streams of audio and visual speech, and for streams of audio and visual speech accompanied by additional, temporally offset, visual speech streams. We find that the precision with which synchronous streams of audio and visual speech are identified is enhanced by the presence of additional streams of asynchronous visual speech. Our data suggest that timing perception is shaped by selective grouping processes, which can result in enhanced precision in temporally cluttered environments. The imprecision suggested by previous studies might therefore be a consequence of examining isolated pairs of audio and visual events. We argue that when an isolated pair of cross-modal events is presented, they tend to group perceptually and to seem synchronous as a consequence. We have revealed greater precision by providing multiple visual signals, possibly allowing a single auditory speech stream to group selectively with the most synchronous visual candidate. The grouping processes we have identified might be important in daily life, such as when we attempt to follow a conversation in a crowded room

    In Vivo Generation of Neurotoxic Prion Protein: Role for Hsp70 in Accumulation of Misfolded Isoforms

    Get PDF
    Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrPC) converts into a misfolded isoform (PrPSc) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrPC; in older flies, PrP misfolds, acquires biochemical and structural properties of PrPSc, and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrPSc-specific conformational epitopes. In contrast to PrPSc from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrPSc. Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrPSc-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrPSc is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover the potential therapeutic role of Hsp70 in treating these devastating disorders

    Chronic treatment with 17-DMAG improves balance and coordination in a new mouse model of Machado-Joseph disease

    Get PDF
    Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease currently with no treatment. We describe a novel mouse model of MJD which expresses mutant human ataxin-3 at near endogenous levels and manifests MJD-like motor symptoms that appear gradually and progress over time. CMVMJD135 mice show ataxin-3 intranuclear inclusions in the CNS and neurodegenerative changes in key disease regions, such as the pontine and dentate nuclei. Hsp90 inhibition has shown promising outcomes in some neurodegenerative diseases, but nothing is known about its effects in MJD. Chronic treatment of CMVMJD mice with Hsp90 inhibitor 17-DMAG resulted in a delay in the progression of their motor coordination deficits and, at 22 and 24 weeks of age, was able to rescue the uncoordination phenotype to wild-type levels; in parallel, a reduction in neuropathology was observed in treated animals. We observed limited induction of heat-shock proteins with treatment, but found evidence that 17-DMAG may be acting through autophagy, as LC3-II (both at mRNA and protein levels) and beclin-1 were induced in the brain of treated animals. This resulted in decreased levels of the mutant ataxin-3 and reduced intranuclear aggregation of this protein. Our data validate this novel mouse model as a relevant tool for the study of MJD pathogenesis and for pre-clinical studies, and show that Hsp90 inhibition is a promising therapeutic strategy for MJD.We would like to thank to Dr. Henry Paulson for providing the anti-ataxin-3 serum, Dr. Monica Sousa for the pCMV vector and to Eng. Lucilia Goreti Pinto, Lu s Martins, Miguel Carneiro and Celina Barros for technical assistance. This work was supported by Fundacao para a Ciencia e Tecnologia through the projects FEDER/FCT, POCI/SAU-MMO/60412/2004 and PTDC/SAU-GMG/64076/2006. This work was supported by Fundacao para a Ciencia e Tecnologia through fellowships SFRH/BPD/91562/2012 to A.S-F., SFRH/BD/78388/2011 to S. D-S., SFRH/BD/51059/2010 to A.N-C., and SFRH/BPD/79469/2011 to A.T-C.

    Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CPG of the rat spinal cord in vitro.

    Get PDF
    Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM-1 \u3bcM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other protocols, and delineate the use of oxytocin to strengthen the efficiency of electrical stimulation to activate locomotor circuits

    Stochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability

    Get PDF
    The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively little is known about the functional consequences of interactions between stochastically gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization. Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict consequences of modifications of HCN channel function for in vivo firing patterns
    corecore