98 research outputs found

    The metallicity dependence of WR winds

    Get PDF
    Wolf-Rayet (WR) stars are the most advanced stage in the evolution of the most massive stars. The strong feedback provided by these objects and their subsequent supernova (SN) explosions are decisive for a variety of astrophysical topics such as the cosmic matter cycle. Consequently, understanding the properties of WR stars and their evolution is indispensable. A crucial but still not well known quantity determining the evolution of WR stars is their mass-loss rate. Since the mass loss is predicted to increase with metallicity, the feedback provided by these objects and their spectral appearance are expected to be a function of the metal content of their host galaxy. This has severe implications for the role of massive stars in general and the exploration of low metallicity environments in particular. Hitherto, the metallicity dependence of WR star winds was not well studied. In this contribution, we review the results from our comprehensive spectral analyses of WR stars in environments of different metallicities, ranging from slightly super-solar to SMC-like metallicities. Based on these studies, we derived empirical relations for the dependence of the WN mass-loss rates on the metallicity and iron abundance, respectively.Comment: 5 pages, 4 figures, to be published in the Proceedings of the IAU Symposium No. 329 "The lives and death-throes of massive stars

    Wolf-Rayet stars in the Small Magellanic Cloud: I. Analysis of the single WN stars

    Full text link
    Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10^5.5 to 10^6.1 Lsun. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.Comment: 18+12 pages; 22+8 figures; accepted for publication in A&

    2dF-AAOmega spectroscopy of massive stars in the Magellanic Clouds: The north-eastern region of the Large Magellanic Cloud

    Full text link
    We present spectral classifications from optical spectroscopy of 263 massive stars in the north-eastern region of the Large Magellanic Cloud. The observed two-degree field includes the massive 30 Doradus star-forming region, the environs of SN1987A, and a number of star-forming complexes to the south of 30 Dor. These are the first classifications for the majority (203) of the stars and include eleven double-lined spectroscopic binaries. The sample also includes the first examples of early OC-type spectra (AAOmega 30 Dor 248 and 280), distinguished by the weakness of their nitrogen spectra and by C IV 4658 emission. We propose that these stars have relatively unprocessed CNO abundances compared to morphologically normal O-type stars, indicative of an earlier evolutionary phase. From analysis of observations obtained on two consecutive nights, we present radial-velocity estimates for 233 stars, finding one apparent single-lined binary and nine (>3sigma) outliers compared to the systemic velocity; the latter objects could be runaway stars or large-amplitude binary systems and further spectroscopy is required to investigate their nature.Comment: Accepted by A&

    The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class

    Full text link
    Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods: For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results: We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12% of our sample are more luminous than 10^6 Lsun and contain a significant amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/Lsun) = 5.3...5.8. Conclusions: While the few extremely luminous stars (log (L/Lsun) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/Lsun) = 5.3...5.8, these stars originate from initial masses between 20 and 40 Msun. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to subphotospheric inflation.Comment: 17+46 pages; 10+54 figures; v2: typos corrected, space-saving layout for appendix C, published in A&

    Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars

    Full text link
    Massive stars are the key agents of feedback. Consequently, quantitative analysis of massive stars are required to understand how the feedback of these objects shapes/ creates the large scale structures of the ISM. The giant HII region N206 in the Large Magellanic Cloud contains an OB association that powers a X-ray superbubble, serving as an ideal laboratory in this context. We obtained optical spectra with the muti-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we use the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical parameters and nitrogen abundances of our sample stars are determined by fitting synthetic spectra to the observations. The stellar and wind parameters of nine Of-type stars are used to construct wind momentum,luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N206 association is an Of supergiant which has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age less than 4 million years, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N206 superbubble as measured from the observed X-ray and H alpha emission.Comment: Accepted for the pubblication in Astronomy & Astrophysic

    Low-metallicity massive single stars with rotation. II. Predicting spectra and spectral classes of chemically-homogeneously evolving stars

    Full text link
    Context. Metal-poor massive stars are supposed to be progenitors of certain supernovae, gamma-ray bursts and compact object mergers, potentially contributing to the early epochs of the Universe with their strong ionizing radiation. However, they remain mainly theoretical as individual spectroscopic observations of such objects have rarely been carried out below the metallicity of the SMC. Aims. This work aims at exploring what our state-of-the-art theories of stellar evolution combined with those of stellar atmospheres predict about a certain type of metal-poor (0.02 Z_{\odot}) hot massive stars, the chemically homogeneously evolving ones, called TWUIN stars. Methods. Synthetic spectra corresponding to a broad range in masses (20-130 M_{\odot}) and covering several evolutionary phases from the zero-age main-sequence up to the core helium-burning stage were computed. Results. We find that TWUIN stars show almost no emission lines during most of their {core hydrogen-burning} lifetimes. Most metal lines are completely absent, including nitrogen. During their core helium-burning stage, lines switch to emission and even some metal lines (oxygen and carbon, but still almost no nitrogen) show up. Mass loss and clumping play a significant role in line-formation in later evolutionary phases, particularly during core helium-burning. Most of our spectra are classified as an early O type giant or supergiant, and we find Wolf-Rayet stars of type WO in the core helium-burning phase. Conclusions. An extremely hot, early O type star observed in a low-metallicity galaxy could be the outcome of chemically homogeneous evolution - and therefore the progenitor of a long-duration gamma-ray burst or a type Ic supernova. TWUIN stars may play an important role in reionizing the Universe due to their being hot without showing prominent emission lines during the majority of their lifetimes.Comment: Accepted by Astronomy and Astrophysics. In Pres

    A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879: towards constraining the weak-wind problem of massive stars

    Full text link
    Context: HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (<4 km/s). An initial mass of 16M\,M_\odot and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of logTX=6.7\log T_{\rm X} = 6.7\,[K] and an X-ray luminosity of logLX=32\log L_\text{X} = 32\,[erg/s]. Short- and long-scale variability is seen in the H-alpha line, but only a very long period of P5P \approx 5\,yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as logM˙B=09.0[M/yr]\log \dot{M}_{B=0}\approx -9.0\,[{M_\odot}/{\rm yr}]. The magnetic field traps the stellar wind up to the Alfv\'en radius > 12R12\,R_\odot, implying that its true mass-loss rate is logM˙<10.2[M/yr]\log \dot{M}< -10.2\,[{M_\odot}/{\rm yr}]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars.Comment: Accepted for publication in A&A on Aug. 9, 2017, 12 + 1 pages, 15 figures. Paper replaced due to typos and missing acknowledgment

    A rare early-type star revealed in the Wing of the Small Magellanic Cloud

    Full text link
    Sk 183 is the visually-brightest star in the N90 nebula, a young star-forming region in the Wing of the Small Magellanic Cloud (SMC). We present new optical spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the basis of its nitrogen spectrum, the star also displays broadened He I absorption which suggests a later type. We propose that Sk 183 has a composite spectrum and that it is similar to another star in the SMC, MPG 324. This brings the number of rare O2- and O3-type stars known in the whole of the SMC to a mere four. We estimate physical parameters for Sk 183 from analysis of its spectrum. For a single-star model, we estimate an effective temperature of 46+/-2 kK, a low mass-loss rate of ~10^-7 Msun yr^-1, and a spectroscopic mass of 46^+9_-8 Msun (for an adopted distance modulus of 18.7 mag to the young population in the SMC Wing). An illustrative binary model requires a slightly hotter temperature (~47.5 kK) for the primary component. In either scenario, Sk 183 is the earliest-type star known in N90 and will therefore be the dominant source of hydrogen-ionising photons. This suggests Sk 183 is the primary influence on the star formation along the inner edge of the nebula.Comment: Accepted by ApJ, 10 pages, 7 figures, v2 after proof
    corecore