456 research outputs found

    Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    Full text link
    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that the label's drag coefficient is determined by its hydrodynamic size, and that the drag per label monomer is largest for linear labels. However, the addition of side chains to a linear label offers the possibility to increase the hydrodynamic size, and therefore the label efficiency, without having to increase the linear length of the label, thereby simplifying synthesis. The third class of labels investigated, transiently bound micelles, seems very promising for the usage in ELFSE, as they provide a significant higher hydrodynamic drag than the other label types. The results are compared to theoretical predictions, and we investigate how the efficiency of the ELFSE method can be improved by using smartly designed drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule

    Demographic survey of pediatric patients presenting to a chiropractic teaching clinic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considering the increasing use of alternative therapies for children, it is appropriate to determine the demographic profile of pediatric patients entering a chiropractic clinic.</p> <p>Methods</p> <p>Collection of demographic data including age, gender, condition at presentation, previous clinicians consulted and medical referral rates of pediatric patients presenting to a chiropractic teaching clinic between 2006 and 2010.</p> <p>Results</p> <p>Over-all, 20.5% of patients were aged between two days and 15 years and classified as pediatric patients. The most common presenting complaint was musculoskeletal (35%). Excess crying (30%) was the most common complaint in the largest presenting age group which was under 12 weeks of age (62.3%). All children had previously presented for medical care for the same condition. Most (83%) of the infant patients under 12 weeks of age were referred for care by a medical practitioner.</p> <p>Conclusion</p> <p>Parents commonly presented their child for care at this chiropractic clinic with a recommendation from a medical practitioner. The most common complaints were musculoskeletal and excessive crying conditions and the most prevalent age group was under 12 weeks of age.</p

    Debris clearance by microglia: an essential link between degeneration and regeneration

    Get PDF
    Microglia are cells of myeloid origin that populate the CNS during early development and form the brain's innate immune cell type. They perform homoeostatic activity in the normal CNS, a function associated with high motility of their ramified processes and their constant phagocytic clearance of cell debris. This debris clearance role is amplified in CNS injury, where there is frank loss of tissue and recruitment of microglia to the injured area. Recent evidence suggests that this phagocytic clearance following injury is more than simply tidying up, but instead plays a fundamental role in facilitating the reorganization of neuronal circuits and triggering repair. Insufficient clearance by microglia, prevalent in several neurodegenerative diseases and declining with ageing, is associated with an inadequate regenerative response. Thus, understanding the mechanism and functional significance of microglial-mediated clearance of tissue debris following injury may open up exciting new therapeutic avenues

    Glial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning

    Get PDF
    Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury

    TERRA Promotes Telomere Shortening through Exonuclease 1–Mediated Resection of Chromosome Ends

    Get PDF
    The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA–mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5′-3′ nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities

    Electrochemistry of nanozeolite-immobilized cytochrome c in aqueous and nonaqueous solutions

    Get PDF
    peer-reviewedThe electrochemical properties of cytochrome c (cyt c) immobilized on multilayer nanozeolite-modified electrodes have been examined in aqueous and nonaqueous solutions. Layers of Linde type-L zeolites were assembled on indium tin oxide (ITO) glass electrodes followed by the adsorption of cyt c, primarily via electrostatic interactions, onto modified ITO electrodes. The heme protein displayed a quasi-reversible response in aqueous solution with a redox potential of +324 mV (vs NHE), and the surface coverage (Gamma*) increased linearly for the first four layers and then gave a nearly constant value of 200 pmol cm(-2). On immersion of the modified electrodes in 95% (v/v) nonaqueous solutions, the redox potential decreased significantly, a decrease that originated from changes in both the enthalpy and entropy of reduction. On reimmersion of the modified electrode in buffer, the faradic response immediately returned to its original value. These results demonstrate that nanozeolites are potential stable supports for redox proteins and enzymes.ACCEPTEDpeer-reviewe

    Radiation Induces Acute Alterations in Neuronal Function

    Get PDF
    Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABAARs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study

    The Retrohoming of Linear Group II Intron RNAs in Drosophila melanogaster Occurs by Both DNA Ligase 4–Dependent and –Independent Mechanisms

    Get PDF
    Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3′ end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications
    corecore