290 research outputs found
A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic
Sewage, a complex mixture of organic and inorganic chemicals, is considered to be a major source of environmental pollution. A random screen of 20 organic man-made chemicals present in liquid effluents revealed that half appeared able to interact with the estradiol receptor. This was demonstrated by their ability to inhibit binding of 17 beta-estradiol to the fish estrogen receptor. Further studies, using mammalian estrogen screens in vitro, revealed that the two phthalate esters butylbenzyl phthalate (BBP) and di-n-butylphthalate (DBP) and a food antioxidant, butylated hydroxyanisole (BHA) were estrogenic; however, they were all less estrogenic than the environmental estrogen octylphenol. Phthalate esters, used in the production of various plastics (including PVC), are among the most common industrial chemicals. Their ubiquity in the environment and tendency to bioconcentrate in animal fat are well known. Neither BBP nor DBP were able to act as antagonists, indicating that, in the presence of endogenous estrogens, their overall effect would be cumulative. Recently, it has been suggested that environmental estrogens may be etiological agents in several human diseases, including disorders of the male reproductive tract and breast and testicular cancers. The current finding that some phthalate compounds and some food additives are weakly estrogenic in vitro, needs to be supported by further studies on their effects in vivo before any conclusions can be made regarding their possible role in the development of these condition
Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants
Reproduced with permission from Environmental Health Perspectives."This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants." doi:10.1289/ehp.1002497Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Superfund-relevant CECs can be characterized by specific attributes: they are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites.Support for the workshop, from which this article evolved, was provided by the National Institute of Environmental Health Sciences Superfund Research Program (P42-ES04940)
Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants
Reproduced with permission from Environmental Health Perspectives."This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants." doi:10.1289/ehp.1002497Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Superfund-relevant CECs can be characterized by specific attributes: they are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites.Support for the workshop, from which this article evolved, was provided by the National Institute of Environmental Health Sciences Superfund Research Program (P42-ES04940)
Temporal Comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the Serum of Second Trimester Pregnant Women Recruited from San Francisco General Hospital, California
Prenatal exposures to polybrominated diphenyl ethers (PBDEs) can harm neurodevelopment in humans and animals. In 2003–2004, PentaBDE and OctaBDE were banned in California and phased-out of US production; resulting impacts on human exposures are unknown. We previously reported that median serum concentrations of PBDEs and their metabolites (OH-PBDEs) among second trimester pregnant women recruited from San Francisco General Hospital (2008–2009; n=25) were the highest among pregnant women worldwide. We recruited another cohort from the same clinic in 2011–2012 (n=36) and now compare serum concentrations of PBDEs, OH-PBDEs, polychlorinated biphenyl ethers (PCBs) (structurally similar compounds banned in 1979), and OH-PCBs between two demographically similar cohorts. Between 2008–2009 and 2011–2012, adjusted least square geometric mean (LSGM) concentrations of ΣPBDEs decreased 65% (95% CI: 18, 130) from 90.0 ng/g lipid (95% CI: 64.7,125.2) to 54.6 ng/g lipid (95% CI: 39.2, 76.2) (p=0.004); Σ OH-PBDEs decreased six-fold (p<0.0001); and BDE-47, -99, and -100 declined more than BDE-153. There was a modest, non-significant (p=0.13) decline in LSGM concentrations of ΣPCBs and minimal differences in ΣOH-PCBs between 2008–2009 and 2011–2012. PBDE exposures are likely declining due to regulatory action, but the relative stability in PCB exposures suggests PBDE exposures may eventually plateau and persist for decades
Renal replacement therapy in acute kidney injury: controversy and consensus
Renal replacement therapies (RRTs) represent a cornerstone in the management of severe acute kidney injury. This area of intensive care and nephrology has undergone significant improvement and evolution in recent years. Continuous RRTs have been a major focus of new technological and treatment strategies. RRT is being used increasingly in the intensive care unit, not only for renal indications but also for other organ-supportive strategies. Several aspects related to RRT are now well established, but others remain controversial. In this review, we review the available RRT modalities, covering technical and clinical aspects. We discuss several controversial issues, provide some practical recommendations, and where possible suggest a research agenda for the future
A new focus on risk reduction: an ad hoc decision support system for humanitarian relief logistics
Particularly in the early phases of a disaster, logistical decisions are needed to be made quickly and under high pressure for the decision‐makers, knowing that their decisions may have direct consequences on the affected society and all future decisions. Proactive risk reduction may be helpful in providing decision‐makers with optimal strategies in advance. However, disasters are characterized by severe uncertainty and complexity, limited knowledge about the causes of the disaster, and continuous change of the situation in unpredicted ways. Following these assumptions, we believe that adequate proactive risk reduction measures are not practical. We propose strengthening the focus on ad hoc decision support to capture information in almost real time and to process information efficiently to reveal uncertainties that had not been previously predicted. Therefore, we present an ad hoc decision support system that uses scenario techniques to capture uncertainty by future developments of a situation and an optimization model to compute promising decision options. By combining these aspects in a dynamic manner and integrating new information continuously, it can be ensured that a decision is always based on the best currently available and processed information. And finally, to identify a robust decision option that is provided as a decision recommendation to the decision‐makers, methods of multi‐attribute decision making (MADM) are applied. Our approach is illustrated for a facility location decision problem arising in humanitarian relief logistics where the objective is to identify robust locations for tent hospitals to serve injured people in the immediate aftermath of the Haiti Earthquake 2010.Frank Schätter, Marcus Wiens and Frank Schultman
- …