3,645 research outputs found

    Rectenna session: Micro aspects

    Get PDF
    Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving

    Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Get PDF
    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions

    Commensurate to incommensurate magnetic phase transition in Honeycomb-lattice pyrovanadate Mn2V2O7

    Get PDF
    We have synthesized single crystalline sample of Mn2_2V2_2O7_7 using floating zone technique and investigated the ground state using magnetic susceptibility, heat capacity and neutron diffraction. Our magnetic susceptibility and heat capacity reveal two successive magnetic transitions at TN1=T_{N1} = 19 K and TN2=T_{N2} = 11.8 K indicating two distinct magnetically ordered phases. The single crystal neutron diffraction study shows that in the temperature (TT) range 11.8 K T\le T \le 19 K the magnetic structure is commensurate with propagation vector k1=(0,0.5,0)k_1 = (0, 0.5, 0), while upon lowering temperature below TN2=T_{N2} = 11.8 K an incommensurate magnetic order emerges with k2=(0.38,0.48,0.5)k_2 = (0.38, 0.48, 0.5) and the magnetic structure can be represented by cycloidal modulation of the Mn spin in acac-plane. We are reporting this commensurate to incommensurate transition for the first time. We discuss the role of the magnetic exchange interactions and spin-orbital coupling on the stability of the observed magnetic phase transitions.Comment: 8 pages, 7 figure

    The Implementation of the Global Minimum Tax (GloBE): The Need for an Effective Dispute Prevention and Resolution Mechanism

    Get PDF
    The successful implementation of the Global Anti-Base Erosion (GloBE) rules on aglobal scale cannot be achieved without an international effective dispute prevention and reso-lution mechanism. However, the development of a dispute prevention and resolution frameworkfor the GloBE rules faces significant challenges. This article offers two possible options for aneffective dispute prevention and resolution mechanism: a model based on reciprocal domesticlegislations and the multilateral convention model

    Predicting the contributions of novel marine prey resources from angling and anadromy to the diet of a freshwater apex predator

    Get PDF
    1. Anadromous fishes can be important prey resources for piscivorous fauna in lowland rivers. Freshwater anglers exploiting large-bodied cypriniform fishes use high quantities of pelletized marine fishmeal baits that can contribute substantially to fish diets. This marine-derived energy pathway also potentially provides a marine prey resource for freshwater piscivores. However, large-bodied cypriniform fishes are often in a size refuge against predation due to their large sizes. 2. Stable isotope (δ15N and δ13C) analysis assessed how novel marine prey resources influenced the diet of a freshwater apex predator, Northern pike Esox lucius, in an impounded river basin (lower River Severn, Western England). Up to three groups of prey resources were present: anadromous European shad (Alosa spp.), cypriniform fishes with dietary specialisms based on marine fishmeal baits, and freshwater prey. The availability of these prey resources to E. lucius varied according to river connectivity and levels of angling exploitation in different river reaches. 3. Where the three prey groups were present, E. lucius were more enriched in δ13C values (range: -24.74 to -16.34 ‰) compared to river reaches where aspects of the marine prey groups were absent. (range: -28.30 to -21.47) In all reaches, δ13C increased as E. lucius length increased. In the reach where all prey groups were present, the isotopic niches of three E. lucius size classes were strongly partitioned; this was not apparent in reaches where the marine pathways were unavailable. 4. Stable isotope mixing models suggested that freshwater prey were the most important prey item, contributing between 42 and 96 % to the diet of individual E. lucius. However, where present, anadromous fishes and cypriniform fishes specialising on marine fishmeal baits were also important prey items, contributing substantially to the diet of larger E. lucius (length > 650 mm). The total dietary contributions of the marine resources varied considerably among the individual larger fish (22 to 58 % of total diet). 5. The presence of two marine resource pathways in a lowland river thus strongly influenced the diet of an apex predator, but with contributions being a function of their spatial availability, E. lucius body size and individual trophic specialisations. These results emphasise how the anthropogenic activities of river engineering and human subsidies can affect the trophic dynamics of apex predators

    Structural and Magnetic Investigations of Single-Crystals of the Neodymium Zirconate Pyrochlore, Nd2Zr2O7

    Get PDF
    We report structural and magnetic properties studies of large high quality single-crystals of the frustrated magnet, Nd2_2Zr2_2O7_7. Powder x-ray diffraction analysis confirms that Nd2_2Zr2_2O7_7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the axes of the Nd3+^{3+} ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T7T\sim7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.Comment: 10 pages, 6 figures, 4 tables. Accepted for publication in Physical Review

    Phenothiazine-functionalized redox polymers for a new cathode-active material

    Get PDF

    Grover's algorithm on a Feynman computer

    Get PDF
    We present an implementation of Grover's algorithm in the framework of Feynman's cursor model of a quantum computer. The cursor degrees of freedom act as a quantum clocking mechanism, and allow Grover's algorithm to be performed using a single, time-independent Hamiltonian. We examine issues of locality and resource usage in implementing such a Hamiltonian. In the familiar language of Heisenberg spin-spin coupling, the clocking mechanism appears as an excitation of a basically linear chain of spins, with occasional controlled jumps that allow for motion on a planar graph: in this sense our model implements the idea of "timing" a quantum algorithm using a continuous-time random walk. In this context we examine some consequences of the entanglement between the states of the input/output register and the states of the quantum clock

    Cerebellar volume is linked to cognitive function in temporal lobe epilepsy: A quantitative MRI study

    Get PDF
    AbstractIntroductionChronic intractable temporal lobe epilepsy (TLE) is associated with certain comorbidities including cognitive impairment. A less common condition among patients with TLE is intermittent explosive disorder (IED), a specific form of aggressive behavior that has been linked to low intelligence and structural pathology in the amygdala. We aimed to identify other neuroanatomical substrates of both cognitive dysfunction and IED in patients with TLE, with special focus on the cerebellum, a brain region known to participate in functional networks involved in neuropsychological and affective processes.MethodsMagnetic resonance imaging-based volumetric data from 60 patients with temporal lobe epilepsy (36 with and 24 without IED) were evaluated. Cerebellar, hippocampal, and total brain volumes were processed separately. In a total of 50 patients, the relationship between volumetric measurements and clinical and neuropsychological data (full-scale, verbal, and performance intelligence quotients) was analyzed.ResultsIntermittent explosive disorder in patients with TLE was not significantly linked to any of the regional volumes analyzed. However, cognitive performance showed a significant association both with total brain volume and cerebellar volume measurements, whereby the left cerebellar volume showed the strongest association. A deviation from normal cerebellar volumes was related to lower intelligence. Of note, left cerebellar volume was influenced by age and duration of epilepsy. Hippocampal volumes had a minor influence on cognitive parameters.ConclusionOur findings suggest that cerebellar volume is not linked to IED in patients with TLE but is significantly associated with cognitive dysfunction. Our findings support recent hypotheses proposing that the cerebellum has a relevant functional topography
    corecore