159 research outputs found

    Extra dimensions and invisible decay of orthopositronium

    Full text link
    We point out that some models with infinite additional dimension(s) of Randall-Sundrum type predict the disappearance of orthopositronium (o-Ps) into additional dimension(s). The experimental signature of this effect is the o-Ps -> invisible decay of orthopositronium which may occur at a rate within three orders of magnitude of the present experimental upper limit. This result enhances existing motivations for a more sensitive search for this decay mode and suggests additional directions for testing extra dimensions in non accelerator experiments.Comment: 3 pages, to appear in Phys. Rev.

    Radiative Electroweak Breaking with Pseudogoldstone Higgs Doublets

    Get PDF
    We consider a realistic example of supersymmetric grand unification based on SU(3)c×SU(3)L×SU(3)RSU(3)_c \times SU(3)_L \times SU(3)_R in which the electroweak (EW) higgs doublets are `light' as a consequence of the `pseudogoldstone' mechanism. We discuss radiative EW breaking in this model, exploring in particular the `small' (order unity) and `large' (mt/mb)(\approx m_t/m_b) tanβ\tan \beta regions by studying the variations of r(μ1,22/μ32)r (\equiv \sqrt{\mu^2_{1,2}/\mu^2_3}), where μ1,2,32\mu^2_{1,2,3} are the well known MSSM parameters evaluated at the GUT scale. For rr sufficiently close to unity the quantity tanβ\tan \beta can be of order unity, but the converse is not always true.Comment: 18 pages plain LaTeX (to be run twice) and 11 figures available separately from uuencoded file

    Higgs Bosons Production with Photons at Lepton-Antilepton Colliders

    Get PDF
    By model independent way scalar and pseudoscalar neutral Higgs boson production with photon in the tree process μ+μH0γ\mu^+\mu^- \to H^0 \gamma are considered.For the Standard Model and Minimal Supersymmetric Standard Model cases numerical estimates are obtained.The model independent flavour changing Higgs bosons production in the tree processes e+e,μ+eHfc0γe^+e^-,\mu^+e^- \to H^0_{fc} \gamma is also considered.Comment: 12 pages, LaTeX file, using eps.sty, 4 ps figures include

    Quantum Black Hole Evaporation

    Full text link
    We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to derive some algebraic properties of the scattering matrix and prove that the final state contains all initial information.Comment: 37 pages (figs 2 and 3 included as uuencoded compressed tar file), Latex, needs epsf.tex, PUPT-1395, IASSNS-HEP-93/25 (revised version has minor corrections, one reference added

    Extra Dimensions and Higgs Pair Production at Photon Colliders

    Get PDF
    We show that new physics effects due to extra dimensions can dramatically affect Higgs pair production at photon colliders. We find that the cross section due to extra dimensions with the scale MSM_S of new physics around 1.5 TeV, the cross section can be as large as 0.11 pb (1.5pb) for monochromatic photon collision, γγHH\gamma \gamma \to HH, with the collider energy s=0.5(1)\sqrt{s} = 0.5 (1) TeV for Higgs mass of 100 (350) GeV. The cross section can be 3 fb (2.7 fb) for the same parameters for collisions using photon beams from electron or positron back scattered by laser. These cross sections are much larger than those predicted in the Standard Model. Higgs pair production at photon colliders can provide useful tests for new physics due to extra dimensions.Comment: Typos corrected and updated references, Rev-Tex, 11 pages with one figur

    A burst with double radio spectrum observed up to 212 GHz

    Get PDF
    We study a solar flare that occurred on September 10, 2002, in active region NOAA 10105 starting around 14:52 UT and lasting approximately 5 minutes in the radio range. The event was classified as M2.9 in X-rays and 1N in H\alpha. Solar Submillimeter Telescope observations, in addition to microwave data give us a good spectral coverage between 1.415 and 212 GHz. We combine these data with ultraviolet images, hard and soft X-rays observations and full-disk magnetograms. Images obtained from Ramaty High Energy Solar Spectroscopic Imaging data are used to identify the locations of X-ray sources at different energies and to determine the X-ray spectrum, while ultra violet images allow us to characterize the coronal flaring region. The magnetic field evolution of the active region is analyzed using Michelson Doppler Imager magnetograms. The burst is detected at all available radio-frequencies. X-ray images (between 12 keV and 300 keV) reveal two compact sources and 212 GHz data, used to estimate the radio source position, show a single compact source displaced by 25" from one of the hard X-ray footpoints. We model the radio spectra using two homogeneous sources, and combine this analysis with that of hard X-rays to understand the dynamics of the particles. Relativistic particles, observed at radio wavelengths above 50 GHz, have an electron index evolving with the typical soft-hard-soft behaviour.Comment: Submitted to Solar Physics, 20 pages, 8 fugure

    Nonanomalous Discrete R-Symmetry and Light Gravitino

    Get PDF
    We discuss nonanomalous R-symmetry in the supersymmetric grand unified theories. In particular, we explore anomaly-free solutions predicting the gravitino mass in the range of 10^{-3} eV \lsim m_{3/2} \lsim 1 TeV when the μ\mu-parameter is fixed to be μ1TeV\mu \simeq 1 TeV. In the minimal SU(5) GUT, we have shown that μ1TeV\mu \simeq 1 TeV is obtained only if the gravitino is ultralight with mass m3/2103eVm_{3/2} \sim 10^{-3} eV. If extra fields 55{\bf 5}\oplus{\bf 5^*} or 1010{\bf 10}\oplus{\bf 10^*} are introduced, many solutions predicting m_{3/2} \gsim 10^{-3} eV are found. The R-parity is violated due to the vacuum expectation value of the superpotential, but it is controlled by the discrete R-symmetry. We find that the R-parity violating couplings are naturally suppressed much below the experimental bounds for some charge assignments. These charge assignments predict light gravitino with masses of order O(103eV){\cal O}(10^{-3} eV)--O(1MeV){\cal O}(1 MeV). These discrete R-symmetries can be considered as solutions to the μ\mu-problem in low energy supersymmetry breaking models such as the gauge mediation.Comment: 20 pages, no figure. v2: minor corrections, references added, "Note Added" in Summary adde

    Clomiphene, Metformin, or Both for Infertility in the Polycystic Ovary Syndrome

    Get PDF
    Background The polycystic ovary syndrome is a common cause of infertility. Clomiphene and insulin sensitizers are used alone and in combination to induce ovulation, but it is unknown whether one approach is superior. Methods We randomly assigned 626 infertile women with the polycystic ovary syndrome to receive clomiphene citrate plus placebo, extended-release metformin plus placebo, or a combination of metformin and clomiphene for up to 6 months. Medication was discontinued when pregnancy was confirmed, and subjects were followed until delivery. Results The live-birth rate was 22.5% (47 of 209 subjects) in the clomiphene group, 7.2% (15 of 208) in the metformin group, and 26.8% (56 of 209) in the combinationtherapy group (P\u3c0.001 for metformin vs. both clomiphene and combination therapy; P=0.31 for clomiphene vs. combination therapy). Among pregnancies, the rate of multiple pregnancy was 6.0% in the clomiphene group, 0% in the metformin group, and 3.1% in the combination-therapy group. The rates of first-trimester pregnancy loss did not differ significantly among the groups. However, the conception rate among subjects who ovulated was significantly lower in the metformin group (21.7%) than in either the clomiphene group (39.5%, P=0.002) or the combinationtherapy group (46.0%, P\u3c0.001). With the exception of pregnancy complications, adverse-event rates were similar in all groups, though gastrointestinal side effects were more frequent, and vasomotor and ovulatory symptoms less frequent, in the metformin group than in the clomiphene group. Conclusions Clomiphene is superior to metformin in achieving live birth in infertile women with the polycystic ovary syndrome, although multiple birth is a complication. (ClinicalTrials.gov number, NCT00068861.

    Effects of Extra Dimensions on Unitarity and Higgs Boson Mass

    Full text link
    We study the unitarity constraint on the two body Higgs boson elastic scattering in the presence of extra dimensions. The contributions from exchange of spin-2 and spin-0 Kaluza-Klein states can have large effect on the partial wave amplitude. Unitarity condition restrict the maximal allowed value for the ratio rr of the center of mass energy to the gravity scale to be less than one. Although the constraint on the standard Higgs boson mass for rr of order one is considerably relaxed, for small rr the constraint is similar to that in the Standard Model. The resulting bound on the Higgs boson mass is not dramatically altered if perturbative calculations are required to be valid up to the maximal allowed value for rr.Comment: References added, RevTex, 9 pages with two figure

    The origin of the matter-antimatter asymmetry

    Get PDF
    Although the origin of matter-antimatter asymmetry remains unknown, continuing advances in theory and improved experimental limits have ruled out some scenarios for baryogenesis, for example the sphaleron baryogenesis at the electroweak phase transition in the standard model. At the same time, the success of cosmological inflation and the prospects for discovering supersymmetry at the LHC have put some other models in sharper focus. We review the current state of our understanding of baryogenesis with the emphasis on those scenarios that we consider most plausible.Comment: submitted to Reviews of Modern Physics; 38 pages; 9 figure
    corecore