353 research outputs found
Entangled states of trapped ions allow measuring the magnetic field gradient of a single atomic spin
Using trapped ions in an entangled state we propose detecting a magnetic
dipole of a single atom at distance of a few m. This requires a
measurement of the magnetic field gradient at a level of about 10
Tesla/m. We discuss applications e.g. in determining a wide variation of
ionic magnetic moments, for investigating the magnetic substructure of ions
with a level structure not accessible for optical cooling and detection,and for
studying exotic or rare ions, and molecular ions. The scheme may also be used
for measureing spin imbalances of neutral atoms or atomic ensembles trapped by
optical dipole forces. As the proposed method relies on techniques well
established in ion trap quantum information processing it is within reach of
current technology.Comment: 4 pages, 2 fi
MeV neutrinos in double beta decay
The effect of Majorana neutrinos in the MeV mass range on the double beta
decay of various isotopes is studied on pure phenomenological arguments. By
using only experimental half life data, limits on the mixing parameter
of the order 10 can be derived. Also the possible
achievements of upcoming experiments and some consequences are outlined.Comment: 7 pages, 6 uudecoded EPS-figure
Overlap of QRPA states based on ground states of different nuclei --mathematical properties and test calculations--
The overlap of the excited states in quasiparticle random-phase approximation
(QRPA) is calculated in order to simulate the overlap of the intermediate
nuclear states of the double-beta decay. Our basic idea is to use the
like-particle QRPA with the aid of the closure approximation and calculate the
overlap as rigorously as possible by making use of the explicit equation of the
QRPA ground state. The formulation is shown in detail, and the mathematical
properties of the overlap matrix are investigated. Two test calculations are
performed for relatively light nuclei with the Skyrme and volume delta-pairing
energy functionals. The validity of the truncations used in the calculation is
examined and confirmed.Comment: 17 pages, 15 figures, full paper following arXiv:1205.5354 and Phys.
Rev. C 86 (2012) 021301(R
TMA-Based Beamforming For Next Generation Satellite Communication Applications
peer reviewedLow-Earth Orbit (LEO) satellite mega-constellations
have attracted significant interest for their global network coverage
and reduced latency with respect to their geostationary
counterparts. LEO satellites are typically equipped with advanced
antenna architectures, which allow spot-beam steering to specific
areas within the field of view. With the aim to minimize onboard
complexity, this paper studies the beam synthesis and
steering using Time Modulated Arrays (TMA). By analyzing
the properties of the on-off switching and their impact on the
resulting beam footprint, this paper establishes the relationship
between the pulse activation characteristics and the steering
angle of the corresponding users in a downlink satellite-to-
Earth transmission. The corresponding Signal-to-Noise Plus Interference
Ratio (SINR) is derived and analyzed for multi-beam
patterns with different inter-beam separations. We compare the
performance of TMA-based LEO downlink transmission with
conventional beamforming techniques, confirming the promising
performance of TMA with reduced complexity. Finally, the
TMA response is evaluated for practical channel estimation
imperfections, demonstrating the degree of tolerance depending
on the beam shape.8. Decent work and economic growt
Perception versus reality: A National Cohort Analysis of the surgery-first approach for resectable pancreatic cancer
INTRODUCTION: Although surgical resection is necessary, it is not sufficient for long-term survival in pancreatic ductal adenocarcinoma (PDAC). We sought to evaluate survival after up-front surgery (UFS) in anatomically resectable PDAC in the context of three critical factors: (A) margin status; (B) CA19-9; and (C) receipt of adjuvant chemotherapy.
METHODS: The National Cancer Data Base (2010-2015) was reviewed for clinically resectable (stage 0/I/II) PDAC patients. Surgical margins, pre-operative CA19-9, and receipt of adjuvant chemotherapy were evaluated. Patient overall survival was stratified based on these factors and their respective combinations. Outcomes after UFS were compared to equivalently staged patients after neoadjuvant chemotherapy on an intention-to-treat (ITT) basis.
RESULTS: Twelve thousand and eighty-nine patients were included (n = 9197 UFS, n = 2892 ITT neoadjuvant). In the UFS cohort, only 20.4% had all three factors (median OS = 31.2 months). Nearly 1/3rd (32.7%) of UFS patients had none or only one factor with concomitant worst survival (median OS = 14.7 months). Survival after UFS decreased with each failing factor (two factors: 23 months, one factor: 15.5 months, no factors: 7.9 months) and this persisted after adjustment. Overall survival was superior in the ITT-neoadjuvant cohort (27.9 vs. 22 months) to UFS.
CONCLUSION: Despite the perceived benefit of UFS, only 1-in-5 UFS patients actually realize maximal survival when known factors highly associated with outcomes are assessed. Patients are proportionally more likely to do worst, rather than best after UFS treatment. Similarly staged patients undergoing ITT-neoadjuvant therapy achieve survival superior to the majority of UFS patients. Patients and providers should be aware of the false perception of \u27optimal\u27 survival benefit with UFS in anatomically resectable PDAC
Towards a large-scale quantum simulator on diamond surface at room temperature
Strongly-correlated quantum many-body systems exhibits a variety of exotic
phases with long-range quantum correlations, such as spin liquids and
supersolids. Despite the rapid increase in computational power of modern
computers, the numerical simulation of these complex systems becomes
intractable even for a few dozens of particles. Feynman's idea of quantum
simulators offers an innovative way to bypass this computational barrier.
However, the proposed realizations of such devices either require very low
temperatures (ultracold gases in optical lattices, trapped ions,
superconducting devices) and considerable technological effort, or are
extremely hard to scale in practice (NMR, linear optics). In this work, we
propose a new architecture for a scalable quantum simulator that can operate at
room temperature. It consists of strongly-interacting nuclear spins attached to
the diamond surface by its direct chemical treatment, or by means of a
functionalized graphene sheet. The initialization, control and read-out of this
quantum simulator can be accomplished with nitrogen-vacancy centers implanted
in diamond. The system can be engineered to simulate a wide variety of
interesting strongly-correlated models with long-range dipole-dipole
interactions. Due to the superior coherence time of nuclear spins and
nitrogen-vacancy centers in diamond, our proposal offers new opportunities
towards large-scale quantum simulation at room temperatures
The Dirac Equation and the Normalization of its Solutions in a Closed Friedmann-Robertson-Walker Universe
We set up the Dirac equation in a Friedmann-Robertson-Walker geometry and
separate the spatial and time variables. In the case of a closed universe, the
spatial dependence is solved explicitly, giving rise to a discrete set of
solutions. We compute the probability integral and analyze a space-time
normalization integral. This analysis allows us to introduce the fermionic
projector in a closed Friedmann-Robertson-Walker geometry and to specify its
global normalization as well as its local form.Comment: 22 pages, LaTeX, sign error in equation (3.7) correcte
Fluorescence and spin properties of defects in single digit nanodiamonds
International audienceThis article reports stable photoluminescence and high-contrast optically detected electron spin resonance (ODESR) from single nitrogen-vacancy (NV) defect centers created within ultrasmall, disperse nanodiamonds of radius less than 4 nm. Unexpectedly, the efficiency for the production of NV fluorescent defects by electron irradiation is found to be independent of the size of the nanocrystals. Fluorescence lifetime imaging shows lifetimes with a mean value of around 17 ns, only slightly longer than the bulk value of the defects. After proper surface cleaning, the dephasing times of the electron spin resonance in the nanocrystals approach values of some microseconds, which is typical for the type Ib diamond from which the nanoparticle is made. We conclude that despite the tiny size of these nanodiamonds the photoactive nitrogen-vacancy color centers retain their bulk properties to the benefit of numerous exciting potential applications in photonics, biomedical labeling, and imaging
R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay
We consider contributions of R-parity conserving softly broken supersymmetry
(SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating
sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY
model with a Majorana neutrino mass. The new R-parity conserving SUSY
contributions to \znbb are realized at the level of box diagrams. We derive
the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and
the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to
the Majorana neutrino mass is also derived.
Given the data on the \znbb-decay half-life of Ge and the neutrino
mass we obtain constraints on the (B-L)-violating sneutrino mass. These
constraints leave room for accelerator searches for certain manifestations of
the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most
probably too tight for first generation (B-L)-violating sneutrino masses to be
searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende
Capture of Solar and Higher-Energy Neutrinos by Iodine 127
We discuss and improve a recent treatment of the absorption of solar
neutrinos by I, in connection with a proposed solar neutrino
detector. With standard-solar-model fluxes and an in-medium value of -1.0 for
the axial-vector coupling constant , we obtain a B-neutrino cross
section of 3.3, about 50\% larger than in our previous work,
and a Be cross section that is less certain but nevertheless also larger
than before. We then apply the improved techniques to higher incoming energies
that obtain at the LAMPF beam dump, where an experiment is underway to finalize
a calibration of the I with electron neutrinos from muon decay. We
find that forbidden operators, which play no role in solar-neutrino absorption,
contribute nonnegligibly to the LAMPF cross section, and that the preliminary
LAMPF mean value is significantly larger than our prediction.Comment: 13 pages + 3 postscript figures (attached), in RevTex 3 , submitted
to Phys. Rev.
- …