376 research outputs found

    Metric projective geometry, BGG detour complexes and partially massless gauge theories

    Get PDF
    A projective geometry is an equivalence class of torsion free connections sharing the same unparametrised geodesics; this is a basic structure for understanding physical systems. Metric projective geometry is concerned with the interaction of projective and pseudo-Riemannian geometry. We show that the BGG machinery of projective geometry combines with structures known as Yang-Mills detour complexes to produce a general tool for generating invariant pseudo-Riemannian gauge theories. This produces (detour) complexes of differential operators corresponding to gauge invariances and dynamics. We show, as an application, that curved versions of these sequences give geometric characterizations of the obstructions to propagation of higher spins in Einstein spaces. Further, we show that projective BGG detour complexes generate both gauge invariances and gauge invariant constraint systems for partially massless models: the input for this machinery is a projectively invariant gauge operator corresponding to the first operator of a certain BGG sequence. We also connect this technology to the log-radial reduction method and extend the latter to Einstein backgrounds.Comment: 30 pages, LaTe

    Projective BGG equations, algebraic sets, and compactifications of Einstein geometries

    Full text link
    For curved projective manifolds we introduce a notion of a normal tractor frame field, based around any point. This leads to canonical systems of (redundant) coordinates that generalise the usual homogeneous coordinates on projective space. These give preferred local maps to the model projective space that encode geometric contact with the model to a level that is optimal, in a suitable sense. In terms of the trivialisations arising from the special frames, normal solutions of classes of natural linear PDE (so-called first BGG equations) are shown to be necessarily polynomial in the generalised homogeneous coordinates; the polynomial system is the pull back of a polynomial system that solves the corresponding problem on the model. Thus questions concerning the zero locus of solutions, as well as related finer geometric and smooth data, are reduced to a study of the corresponding polynomial systems and algebraic sets. We show that a normal solution determines a canonical manifold stratification that reflects an orbit decomposition of the model. Applications include the construction of structures that are analogues of Poincare-Einstein manifolds.Comment: 22 page

    Einstein metrics in projective geometry

    Full text link
    It is well known that pseudo-Riemannian metrics in the projective class of a given torsion free affine connection can be obtained from (and are equivalent to) the solutions of a certain overdetermined projectively invariant differential equation. This equation is a special case of a so-called first BGG equation. The general theory of such equations singles out a subclass of so-called normal solutions. We prove that non-degerate normal solutions are equivalent to pseudo-Riemannian Einstein metrics in the projective class and observe that this connects to natural projective extensions of the Einstein condition.Comment: 10 pages. Adapted to published version. In addition corrected a minor sign erro

    A sub-product construction of Poincare-Einstein metrics

    Full text link
    Given any two Einstein (pseudo-)metrics, with scalar curvatures suitably related, we give an explicit construction of a Poincar\'e-Einstein (pseudo-)metric with conformal infinity the conformal class of the product of the initial metrics. We show that these metrics are equivalent to ambient metrics for the given conformal structure. The ambient metrics have holonomy that agrees with the conformal holonomy. In the generic case the ambient metric arises directly as a product of the metric cones over the original Einstein spaces. In general the conformal infinity of the Poincare metrics we construct is not Einstein, and so this describes a class of non-conformally Einstein metrics for which the (Fefferman-Graham) obstruction tensor vanishes.Comment: 23 pages Minor correction to section 5. References update
    • …
    corecore